优化问题无处不在,机器学习核心所在

optimization is the core of machine learning

AI问题 = 模型 + 优化
任何一个优化问题,都可以写成如下形式:
M i n i m i z e f 0 ( x ) Minimize f_0(x) Minimizef0(x)
s . t . f i ( x ) < = 0 , i = 1 , 2... , K s.t. f_i(x)<=0,i={1,2...,K} s.t.fi(x)<=0,i=1,2...,K
g j ( x ) = 0 , j = 1 , 2 , . . . L g_j(x)=0,j={1,2,...L} gj(x)=0,j=1,2,...L

1.优化问题的分类

·smooth Vs Non-smooth
·convex Vs Non-convex
·constrained Vs Non-constrained
·continous Vs distributed

2.凸函数和非凸函数

凸函数具有全局最优解,非凸函数具有局部最优解

3.怎么判断凸函数?

·通过定义:定义域为凸集,函数本身为凸函数
·通过一阶充要条件: f ( y ) > = f ( x ) + f ′ ( x ) ( y − x ) f(y) >= f(x) + f'(x)(y-x) f(y)>=f(x)+f(x)(yx)
·通过二阶充要条件: f ′ ′ ( x ) > = 0 f''(x)>=0 f(x)>=0
·通过operation,凸+凸 = 凸
在这里插入图片描述
在这里插入图片描述

4.优化目标函数的种类

·least squar problem 最小二乘
·linear programing problem 线性
·qudratic programing problem 二次
·integer programing problem 整型
·geometic programing 图

5.非凸函数的处理

整数线性规划的分治方法。

举例说明优化问题的重要性

set cover problem

假设我们有个全集U(Universal Set),以及 m m m个子集合 S 1 , S 2 , . . . , S m S_1,S_2,...,S_m S1,S2,...,Sm,目标是找最少的集合,使得集合的Union等于U。

令U={1,2,3,4,5},S: S 1 S_1 S1={1,2,3}, S 2 S_2 S2={2,4}, S 3 S_3 S3={1,3}, S 4 S_4 S4={4}, S 5 S_5 S5={3,4}, S 5 S_5 S5={3,4}, S 6 S_6 S6={4,5},最少的集合为 S 1 S_1 S1={1,2,3}, S 6 S_6 S6={4,5}。

approach1: Exhausive search

iteration1:选择一个集合 S1,S2,S3,S4,S5,S6 == U?
iteration2:选择两个集合 S1US2,S1US3… S1US6 一定得到全局最优解

approach2:贪心算法

iteration1: S1,S2,S3,S4,S5,S6中删除一个,删除S1,保证剩下能并到U
iteration2:S2,S3,S4,S5,S6再删除一个S4,保证剩下能并到U
iteration3:S2,S3,S5,S6再删除一个S5,保证剩下能并到U
iteration4:S2,S3,S6 达到终止条件,无法删除,最终得到局部最优{S2,S3,S6}

approach3:Optimization

objection function: ∑ i m x i \sum_i^m x_i imxi
s . t . x i ∈ 0 , 1 s.t. x_i\in0,1 s.t.xi0,1 i = 1 , 2 , . . . , m i=1,2,...,m i=1,2,...,m
∑ i : e ∈ S i x i > = 1 \sum_{i:e\in S_i} \quad x_i>=1 i:eSixi>=1 对于 U U U中的元素 e e e,在 S i S_i Si中被取次数大于等于1
q u e s t i o n 1 : i s i t c o n v e x question1: is\quad it \quad convex question1:isitconvex
定义域为Convex Set?No 目标函数为Convex function? yes

#进行松弛操作
objection function: ∑ i m x i \sum_i^m x_i imxi
s . t . x i ∈ [ 0 , 1 ] s.t. x_i\in[0,1] s.t.xi[0,1] i = 1 , 2 , . . . , m i=1,2,...,m i=1,2,...,m
∑ i : e ∈ S i x i > = 1 \sum_{i:e\in S_i} \quad x_i>=1 i:eSixi>=1 对于 U U U中的元素 e e e,在 S i S_i Si中被取次数大于等于1
通过线性规划的算法解出松弛解,
i f x i < 0.5 , x i = 0 , e l s e x i = 1 if\quad x_i<0.5,\quad x_i=0,\quad else\quad x_i=1 ifxi<0.5,xi=0,elsexi=1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值