数论函数-积性函数

数论函数


数论函数:定义域为整数,培域为复数域的函数


积性函数


积性函数:现在已知一个数论函数,且有 f ( 1 ) = 1 f(1) = 1 f(1)=1,则当其满足对于任意两个互质的数 p p p q q q都满足 f ( p ⋅ q ) = f ( p ) ⋅ f ( q ) f(p \cdot q) = f(p) \cdot f(q) f(pq)=f(p)f(q)


常见的积性函数

1. μ ( i ) \mu(i) μ(i)莫比乌斯函数

μ ( n ) = { 1 n = = 1 ( − 1 ) k n = p 1 ∗ p 2 ∗ p 3 ∗ p 4 . . . ∗ p k 0 其 他 情 况 \mu(n) = \begin{cases} 1 & n == 1\\ (-1)^k & n = p_1*p_2*p_3*p_4...*p_k\\ 0 & 其他情况 \end{cases} μ(n)=1(1)k0n==1n=p1p2p3p4...pk

2. φ ( n ) \varphi(n) φ(n)欧拉函数,小于n且和n互质的数字的数量
∑ i = 1 n [ g c d ( i , n ) = = 1 ] \sum_{i=1}^{n}[gcd(i,n)==1] i=1n[gcd(i,n)==1]

3. d ( n ) d(n) d(n)约数函数,就是n的约数个数有多少个
∑ i = 1 n [ n % i ! = 0 ] \sum_{i=1}^{n}[n\%i!=0] i=1n[n%i!=0]

4. σ ( n ) \sigma(n) σ(n)约数和函数,就是约数的和是多少

完全积性函数:无需p和q互质

1. e ( n ) = [ n = = 1 ] e(n)=[n==1] e(n)=[n==1]–元函数
2. I ( n ) = 1 I(n)=1 I(n)=1–恒等函数
3. i d ( n ) = n id(n)=n id(n)=n–单位函数

迪利克雷卷积

( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) g ( n d ) (f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d}) (fg)(n)=dnf(d)g(dn)

运算:

迪利克雷卷积满足:

  1. 交换率: f ∗ g = g ∗ f f * g = g * f fg=gf
  2. 结合率: ( f ∗ g ) ∗ h = f ∗ ( h ∗ g ) (f * g) * h = f * (h * g) (fg)h=f(hg)
  3. 分配率: f ∗ ( g + h ) = f ∗ g + f ∗ h = ( g + h ) ∗ f f * (g + h) = f * g + f * h = (g + h) * f f(g+h)=fg+fh=(g+h)f
  4. 元函数任意函数卷积都是函数本身
  5. 对于任意函数数论函数 f f f如有 f ( 1 ) ! = 0 f(1) != 0 f(1)!=0都有唯一得函数 f − 1 f^{-1} f1,使得 f ∗ f − 1 = e f*f^{-1} = e ff1=e

f − 1 ( n ) = { 1 f ( n ) n = 1 − 1 f ( 1 ) ∑ d ∣ n , n ! = d f ( n d ) f − 1 ( d ) n > 1 f^{-1}(n)= \begin{cases} \frac{1}{f(n)} & n= 1\\ \frac{-1}{f(1)}\sum_{d|n,n!=d}f(\frac{n}{d})f^{-1}(d) & n > 1 \end{cases} f1(n)={f(n)1f(1)1dn,n!=df(dn)f1(d)n=1n>1


根据定义:我们可以发现莫比乌斯函数 μ \mu μ满足
μ ∗ I = e \mu * I = e μI=e
也就是说我们也会用到则个来证明莫比乌斯反演


常见的卷积函数举例

1.莫比乌斯函数的卷积恒等函数为元函数
μ ∗ I = e \mu * I = e μI=e
也就是说 I I I μ \mu μ互为逆元。
2.欧拉函数卷积恒等函数为单位函数
ϕ ∗ I = i d \phi * I = id ϕI=id
同理也有
ϕ = i d ∗ μ \phi=id*\mu ϕ=idμ
根据这个式子还有
ϕ ( n ) n = ∑ d ∣ n μ ( d ) d \frac{\phi(n)}{n}=\sum_{d|n}\frac{\mu(d)}{d} nϕ(n)=dndμ(d)
3.恒等函数卷积单位函数为约数和函数
I ∗ i d = σ I*id=\sigma Iid=σ
同理也有
i d = σ ∗ μ id=\sigma * \mu id=σμ
4.恒等函数卷积恒等函数为数个数函数
I ∗ I = d I*I=d II=d
同理也就有
I = d ∗ μ I=d*\mu I=dμ
5.
( i d ⋅ ϕ ) ∗ i d = i d 2 (id\cdot \phi) * id = id^{2} (idϕ)id=id2
以上结论都要记住以后构造杜教


莫比乌斯反演


对于数论函数 f ( n ) f(n) f(n) F ( n ) F(n) F(n),满足
F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d)
则定义莫比乌斯反演:
f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d}) f(n)=dnμ(d)F(dn)
或者满足
F ( n ) = ∑ n ∣ d f ( d ) F(n)=\sum_{n|d}f(d) F(n)=ndf(d)
反演得
f ( n ) = ∑ n ∣ d μ ( d n ) F ( d ) f(n) = \sum_{n|d}\mu(\frac{d}{n})F(d) f(n)=ndμ(nd)F(d)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值