线段树合并与分裂维护树上最长上升子序列 + 点分治删点 ---- 2021 牛客多校第一场 C - Cut the tree(详解)

本文探讨了一种树形结构中求最长上升子序列的问题,并提出了解决方案。首先,通过线段树维护每个节点的最长上升子序列和最长下降子序列,然后针对删除节点的情况,分析了删除树的重心可以达到最小化最长上升子序列长度的效果。通过动态维护和优化,实现了O(n log^2 n)的时间复杂度。最后,给出了完整的AC代码实现。
摘要由CSDN通过智能技术生成

题目大意:

给你一个树,树上每个点都有一个权值 v a l n o d e val_{node} valnode,路径 ( u , v ) (u,v) (u,v) 上所有点按顺序有序序列,令 f ( u , v ) f(u,v) f(u,v)是这个序列的最长上升子序列的长度,设 G G G m a x ( f ( u , v ) ) ∣ ( u , v ) 是 可 达 的 max(f(u,v))|(u,v)是可达的 max(f(u,v))(u,v)

现在叫你删除一个点 v v v使得 G G G最小


解题思路:

思路1:求解树最长上升子序列怎么求?

首先我们先假设是对一个有根的树求

  1. 对于一个 d p [ i ] dp[i] dp[i]我们要找到小于 v a l i val_i vali且最长的子序列去更新 d p [ i ] dp[i] dp[i],那么在树上要维护的 v a l i val_i vali就很多了,对于每个点我们都要开一个线段树,线段树每个叶子节点维护的是以 v a l = p o s val=pos val=pos结尾的最长上升子序列的长度是多少?那么我们在遍历的时候自底向上的去合并结果 ---- 线段树合并了
  2. 合并接受我们查询 [ 1 , v a l i − 1 ] [1,val_i-1] [1,vali1]里面最大的 l e n len len是多少跟新答案

在这里插入图片描述
3. 但是有个问题是树上的路径是有拐弯的,而且我们这样子求出来的是一定经过点 i i i的,但是我可以路径经过但是点 i i i不选呀!!
4. 那么我们还少了两种情况

   4.1:拐弯路径
   4.2:不选点i的情况

在这里插入图片描述

  1. 对于拐弯路径我们就再维护一个值就是以 v a l = p o s val=pos val=pos结尾的最长下降子序列的长度,对于点 i i i v a l i val_i vali我们去查询 [ 1 , v a l i − 1 ] [1,val_i-1] [1,vali1]里面最长上升子序列的长度 u l s uls uls,我们去查询 [ v a l i + 1 , n ] [val_i+1,n] [vali+1,n]里面最长下降子序列的长度 d l s dls dls,路径长度就是 d l s + u l s + 1 dls+uls+1 dls+uls+1
  2. 对于不选择点 i i i的情况就是我们直接在 m e g meg meg(线段树合并)的时候求解就可以了
    每次把两个子树维护的互补区间 d l s 和 u l s dls和uls dlsuls的最大值相加就可以了
inline int meg(int &x, int y, int l = 1, int r = n) {
   if(!x || !y) {x |= y;return 0;}
   if(l == r) {
      tr[x].uls = max(tr[x].uls, tr[y].uls);
      tr[x].dls = max(tr[x].dls, tr[y].dls);
      return 0;
   }
   int v = max(tr[tr[x].lson].uls + tr[tr[y].rson].dls, 
               tr[tr[y].lson].uls + tr[tr[x].rson].dls);
   //我们知道左右儿子为维护的区间是不交的
   v = max(v,meg(tr[x].lson,tr[y].lson,l,mid));
   v = max(v,meg(tr[x].rson,tr[y].rson,mid+1,r));
   pushup(x);
   return v;
}

思路2:如何删点

就是我们知道对于树上路径贪心肯定是删除树的重心!
假如我们现在要删除的点是 u u u,那么我们先分别求出所有以 s o n [ u ] son[u] son[u]为根的最长上升子序列

但是有 n n n个点,每次都是 O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))求总的就是 O ( n 2 l o g ( n ) ) O(n^2log(n)) O(n2log(n))

优化

就是我们假如我们在 i t it it这个子树里面找到最大值,那么我们只可能去删 i t it it这个子树里面的点 为 了 保 持 平 衡 很 显 然 为了保持平衡很显然

每次求重心
去找最大的只会递归 l o g ( n ) log(n) log(n)

时间就是 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)的完美!!!


AC code

#include <bits/stdc++.h>
#define mid ((l + r) >> 1)
#define Lson rt << 1, l , mid
#define Rson rt << 1|1, mid + 1, r
#define ms(a,al) memset(a,al,sizeof(a))
#define log2(a) log(a)/log(2)
#define lowbit(x) ((-x) & x)
#define IOS std::ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define INF 0x3f3f3f3f
#define LLF 0x3f3f3f3f3f3f3f3f
#define f first
#define s second
#define endl '\n'
using namespace std;
const int N = 2e6 + 10, mod = 1e9 + 9;
const int maxn = 100010;
const long double eps = 1e-5;
const int EPS = 500 * 500;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
typedef pair<double,double> PDD;
template<typename T> void read(T &x) {
   x = 0;char ch = getchar();ll f = 1;
   while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
   while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
template<typename T, typename... Args> void read(T &first, Args& ... args) {
   read(first);
   read(args...);
}

int n;
struct Segtree {
   int lson, rson;
   int uls, dls;  // 最长上升和下将
}tr[maxn * 64];
int root[maxn], cnt;
int val[maxn];

vector<int> G[maxn];
bool vis[maxn];
int siz[maxn], now_node, mx, rt;
int ans = INF;

void find_root(int u, int fa) {
   siz[u] = 1;
   int max_son = 0;
   for(auto it : G[u]) {
       if(vis[it] || it == fa) continue;
       find_root(it,u);
       siz[u] += siz[it];
       max_son = max(max_son,siz[it]);
   }
   max_son = max(max_son,now_node-siz[u]);
   if(mx > max_son) {
      rt = u;
      mx = max_son;
   }
}
//..............................................................

void pushup(int x) {
   tr[x].uls = max(tr[tr[x].lson].uls, tr[tr[x].rson].uls);
   tr[x].dls = max(tr[tr[x].lson].dls, tr[tr[x].rson].dls);
   return;
}

inline int meg(int &x, int y, int l = 1, int r = n) {
   if(!x || !y) {x |= y;return 0;}
   if(l == r) {
      tr[x].uls = max(tr[x].uls, tr[y].uls);
      tr[x].dls = max(tr[x].dls, tr[y].dls);
      return 0;
   }
   int v = max(tr[tr[x].lson].uls + tr[tr[y].rson].dls, 
               tr[tr[y].lson].uls + tr[tr[x].rson].dls);
   v = max(v,meg(tr[x].lson,tr[y].lson,l,mid));
   v = max(v,meg(tr[x].rson,tr[y].rson,mid+1,r));
   pushup(x);
   return v;
}

inline int quary(int rt, int l, int r, int posl, int posr, bool ok) {
   if(posl > posr) return 0;
   if(posl <= l && posr >= r) {
      if(ok) return tr[rt].dls;
      else return tr[rt].uls;
   }
   int res = 0;
   if(posl <= mid) res = max(quary(tr[rt].lson,l,mid,posl,posr, ok),res);
   if(posr >  mid) res = max(quary(tr[rt].rson,mid+1,r,posl,posr, ok),res);
   return res;
}

void add(int &rt, int l, int r, int pos, int len, bool ok) {
   if(!rt) {
      rt = ++ cnt;
      tr[rt].dls = tr[rt].uls = tr[rt].lson = tr[rt].rson = 0;
   }
   if(l == r) {
      if(ok) tr[rt].dls = max(tr[rt].dls,len);
      else tr[rt].uls = max(tr[rt].uls,len);
      return;
   }

   if(pos <= mid) add(tr[rt].lson,l,mid,pos,len,ok);
   else add(tr[rt].rson,mid+1,r,pos,len,ok);

   pushup(rt);
   return;
}

inline int dfs(int u, int fa) {
   root[u] = 0;
   int _max = 1;
   int maxdls = 0;
   int maxuls = 0;
   for(auto it: G[u]) {
      if(it == fa) continue;
      _max = max(_max,dfs(it,u));
      int todls = quary(root[it],1,n,val[u]+1,n,1);
      int touls = quary(root[it],1,n,1,val[u]-1,0);
      _max = max(todls+maxuls+1,_max);
      _max = max(touls+maxdls+1,_max);
      maxdls = max(maxdls,todls);
      maxuls = max(maxuls,touls);
      _max = max(meg(root[u],root[it]),_max);
   }
   add(root[u],1,n,val[u],maxdls+1,1);
   add(root[u],1,n,val[u],maxuls+1,0);
   return _max;
}

void div(int u) {
   vis[u] = 1;
   int _max = 1;
   int nxt = 0; 
   for(auto it : G[u]) {
      cnt = 0;// 重新开始线段树合并
      int val = dfs(it,u);
      if(val > _max) {
         _max = val;
         nxt = it;
      }
   }

   ans = min(ans,_max);
   if(vis[nxt]) return;

   now_node = siz[nxt]; mx = 1e9;
   find_root(nxt,0);
   div(rt);
}

int main() {
   read(n);
   for(int i = 1; i < n; ++ i) {
      int u, v;
      read(u,v);
      G[u].push_back(v);
      G[v].push_back(u);
   }
   for(int i = 1; i <= n; ++ i) read(val[i]);

   now_node = n; mx = 1e9;
   find_root(1,0);
   div(rt);
   
   cout << ans;
   return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值