题目大意:
给你一个树,树上每个点都有一个权值 v a l n o d e val_{node} valnode,路径 ( u , v ) (u,v) (u,v) 上所有点按顺序有序序列,令 f ( u , v ) f(u,v) f(u,v)是这个序列的最长上升子序列的长度,设 G G G是 m a x ( f ( u , v ) ) ∣ ( u , v ) 是 可 达 的 max(f(u,v))|(u,v)是可达的 max(f(u,v))∣(u,v)是可达的
现在叫你删除一个点 v v v使得 G G G最小
解题思路:
思路1:求解树最长上升子序列怎么求?
首先我们先假设是对一个有根的树求
- 对于一个 d p [ i ] dp[i] dp[i]我们要找到小于 v a l i val_i vali且最长的子序列去更新 d p [ i ] dp[i] dp[i],那么在树上要维护的 v a l i val_i vali就很多了,对于每个点我们都要开一个线段树,线段树每个叶子节点维护的是以 v a l = p o s val=pos val=pos结尾的最长上升子序列的长度是多少?那么我们在遍历的时候自底向上的去合并结果 ---- 线段树合并了
- 合并接受我们查询 [ 1 , v a l i − 1 ] [1,val_i-1] [1,vali−1]里面最大的 l e n len len是多少跟新答案
3. 但是有个问题是树上的路径是有拐弯的,而且我们这样子求出来的是一定经过点
i
i
i的,但是我可以路径经过但是点
i
i
i不选呀!!
4. 那么我们还少了两种情况
4.1:拐弯路径
4.2:不选点i的情况
- 对于拐弯路径我们就再维护一个值就是以 v a l = p o s val=pos val=pos结尾的最长下降子序列的长度,对于点 i i i的 v a l i val_i vali我们去查询 [ 1 , v a l i − 1 ] [1,val_i-1] [1,vali−1]里面最长上升子序列的长度 u l s uls uls,我们去查询 [ v a l i + 1 , n ] [val_i+1,n] [vali+1,n]里面最长下降子序列的长度 d l s dls dls,路径长度就是 d l s + u l s + 1 dls+uls+1 dls+uls+1
- 对于不选择点
i
i
i的情况就是我们直接在
m
e
g
meg
meg(线段树合并)的时候求解就可以了
每次把两个子树维护的互补区间 d l s 和 u l s dls和uls dls和uls的最大值相加就可以了
inline int meg(int &x, int y, int l = 1, int r = n) {
if(!x || !y) {x |= y;return 0;}
if(l == r) {
tr[x].uls = max(tr[x].uls, tr[y].uls);
tr[x].dls = max(tr[x].dls, tr[y].dls);
return 0;
}
int v = max(tr[tr[x].lson].uls + tr[tr[y].rson].dls,
tr[tr[y].lson].uls + tr[tr[x].rson].dls);
//我们知道左右儿子为维护的区间是不交的
v = max(v,meg(tr[x].lson,tr[y].lson,l,mid));
v = max(v,meg(tr[x].rson,tr[y].rson,mid+1,r));
pushup(x);
return v;
}
思路2:如何删点
就是我们知道对于树上路径贪心肯定是删除树的重心!
假如我们现在要删除的点是
u
u
u,那么我们先分别求出所有以
s
o
n
[
u
]
son[u]
son[u]为根的最长上升子序列
但是有 n n n个点,每次都是 O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))求总的就是 O ( n 2 l o g ( n ) ) O(n^2log(n)) O(n2log(n))
优化
就是我们假如我们在 i t it it这个子树里面找到最大值,那么我们只可能去删 i t it it这个子树里面的点 为 了 保 持 平 衡 很 显 然 为了保持平衡很显然 为了保持平衡很显然
每次求重心
去找最大的只会递归
l
o
g
(
n
)
log(n)
log(n)层
时间就是 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)的完美!!!
AC code
#include <bits/stdc++.h>
#define mid ((l + r) >> 1)
#define Lson rt << 1, l , mid
#define Rson rt << 1|1, mid + 1, r
#define ms(a,al) memset(a,al,sizeof(a))
#define log2(a) log(a)/log(2)
#define lowbit(x) ((-x) & x)
#define IOS std::ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define INF 0x3f3f3f3f
#define LLF 0x3f3f3f3f3f3f3f3f
#define f first
#define s second
#define endl '\n'
using namespace std;
const int N = 2e6 + 10, mod = 1e9 + 9;
const int maxn = 100010;
const long double eps = 1e-5;
const int EPS = 500 * 500;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
typedef pair<double,double> PDD;
template<typename T> void read(T &x) {
x = 0;char ch = getchar();ll f = 1;
while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
template<typename T, typename... Args> void read(T &first, Args& ... args) {
read(first);
read(args...);
}
int n;
struct Segtree {
int lson, rson;
int uls, dls; // 最长上升和下将
}tr[maxn * 64];
int root[maxn], cnt;
int val[maxn];
vector<int> G[maxn];
bool vis[maxn];
int siz[maxn], now_node, mx, rt;
int ans = INF;
void find_root(int u, int fa) {
siz[u] = 1;
int max_son = 0;
for(auto it : G[u]) {
if(vis[it] || it == fa) continue;
find_root(it,u);
siz[u] += siz[it];
max_son = max(max_son,siz[it]);
}
max_son = max(max_son,now_node-siz[u]);
if(mx > max_son) {
rt = u;
mx = max_son;
}
}
//..............................................................
void pushup(int x) {
tr[x].uls = max(tr[tr[x].lson].uls, tr[tr[x].rson].uls);
tr[x].dls = max(tr[tr[x].lson].dls, tr[tr[x].rson].dls);
return;
}
inline int meg(int &x, int y, int l = 1, int r = n) {
if(!x || !y) {x |= y;return 0;}
if(l == r) {
tr[x].uls = max(tr[x].uls, tr[y].uls);
tr[x].dls = max(tr[x].dls, tr[y].dls);
return 0;
}
int v = max(tr[tr[x].lson].uls + tr[tr[y].rson].dls,
tr[tr[y].lson].uls + tr[tr[x].rson].dls);
v = max(v,meg(tr[x].lson,tr[y].lson,l,mid));
v = max(v,meg(tr[x].rson,tr[y].rson,mid+1,r));
pushup(x);
return v;
}
inline int quary(int rt, int l, int r, int posl, int posr, bool ok) {
if(posl > posr) return 0;
if(posl <= l && posr >= r) {
if(ok) return tr[rt].dls;
else return tr[rt].uls;
}
int res = 0;
if(posl <= mid) res = max(quary(tr[rt].lson,l,mid,posl,posr, ok),res);
if(posr > mid) res = max(quary(tr[rt].rson,mid+1,r,posl,posr, ok),res);
return res;
}
void add(int &rt, int l, int r, int pos, int len, bool ok) {
if(!rt) {
rt = ++ cnt;
tr[rt].dls = tr[rt].uls = tr[rt].lson = tr[rt].rson = 0;
}
if(l == r) {
if(ok) tr[rt].dls = max(tr[rt].dls,len);
else tr[rt].uls = max(tr[rt].uls,len);
return;
}
if(pos <= mid) add(tr[rt].lson,l,mid,pos,len,ok);
else add(tr[rt].rson,mid+1,r,pos,len,ok);
pushup(rt);
return;
}
inline int dfs(int u, int fa) {
root[u] = 0;
int _max = 1;
int maxdls = 0;
int maxuls = 0;
for(auto it: G[u]) {
if(it == fa) continue;
_max = max(_max,dfs(it,u));
int todls = quary(root[it],1,n,val[u]+1,n,1);
int touls = quary(root[it],1,n,1,val[u]-1,0);
_max = max(todls+maxuls+1,_max);
_max = max(touls+maxdls+1,_max);
maxdls = max(maxdls,todls);
maxuls = max(maxuls,touls);
_max = max(meg(root[u],root[it]),_max);
}
add(root[u],1,n,val[u],maxdls+1,1);
add(root[u],1,n,val[u],maxuls+1,0);
return _max;
}
void div(int u) {
vis[u] = 1;
int _max = 1;
int nxt = 0;
for(auto it : G[u]) {
cnt = 0;// 重新开始线段树合并
int val = dfs(it,u);
if(val > _max) {
_max = val;
nxt = it;
}
}
ans = min(ans,_max);
if(vis[nxt]) return;
now_node = siz[nxt]; mx = 1e9;
find_root(nxt,0);
div(rt);
}
int main() {
read(n);
for(int i = 1; i < n; ++ i) {
int u, v;
read(u,v);
G[u].push_back(v);
G[v].push_back(u);
}
for(int i = 1; i <= n; ++ i) read(val[i]);
now_node = n; mx = 1e9;
find_root(1,0);
div(rt);
cout << ans;
return 0;
}