Part 1:预训练——AI的九年义务教育 📚
想象你往峨眉山猴子面前扔了1000本《五年高考三年模拟》-我那时候还在做的题(海量互联网数据),突然有一天它开口唱起《我在东北玩泥巴》,这有意思的过程就是LLM的预训练范式!这时候你的表情就像“啊这河里吗”,但别急,背后是三大杀招:
1️⃣ 分词赛博炼丹术:
文字的量子重组
用tokenizer把"松花江上"炼成[104130, 104104,…]的 数字灵纹,过程堪比:
中文:用菜刀剁碎文言文 → [“松”,“花”,“江”,“上”]
英文:拿激光剑切分单词 → “ChatGPT” → [“Chat”,“G”,“PT”]
二次元:把"哈基米"直接炼成SSR级token✨
这不就是让AI学手语吗?!(手动狗头)
2️⃣ 注意力玄学:
文字的量子纠缠
Transformer里每个字都在上演《三体》剧情:
"周杰伦喝奶茶"名场面:
"喝"和"奶茶"用QK矩阵疯狂贴贴(内积值0.87),多头注意力=AI开8个分身同时嗑CP。
位置编码给每个字烙上时空坐标:“奶茶"在第5位=第5维度暗物质,举个栗子🌰:
当AI看到"苹果”——
第一层:🍎红苹果?
第六层:📱乔布斯的苹果?
第十二层:🌍牛顿的苹果??
3️⃣ 反向传播:
AI一边做题一边用loss值自我PUA,像极了深夜改论文的你——“这个残差太大必须修正!”。
while training:
loss = cross_entropy(pred, label) # 天道降下九九雷劫
optimizer.step() # 运转《九转梯度下降大法》
if loss < 1.0: # 金丹初成!
print("AI道友突破筑基期!")
韩立渡劫:
残差太大 → “这参数必须修正!”(捏碎玉简.jpg)
梯度消失 → “我韩立的灵力呢??”(吐血三升.mp4)
🔑 常见博客的关键词说人话:自监督学习=AI的电子榨菜,Embedding=文字变形术,MLP=信息加工厂
Part 2:模型推理——文字的量子力学实验 (博主自学过狄拉克量子力学)🧪
当AI学成出山开始"显摆知识",整个过程堪称文字的星际穿越。让我们一同探索这个奇妙的旅程。
输入咒语:文字编码的量子化过程 🔮
当你输入如“东北老铁咋整”这样的文本时,AI内部将经历一个复杂的转换流程:
# 代码视角看编码流程
input_text = "东北老铁咋整"
tokens = tokenizer.encode(input_text) # → [2351, 6670, 8853, 10414]
embeddings = lookup_table[tokens] # 每个token变成768维向量
position_emb = add_position(embeddings) # 给每个字打上时空坐标
量子化过程:
- 原始文本被拆解为token ID(相当于文字DNA)
- 每个token转化为768维向量(相当于文字的量子态)
- 加入位置编码:让AI知道"老铁"在第2个位置
注意力狂欢:文字的星际穿越 🌌
2.1 Transformer层的套娃操作(transformer的人话版解析还在✍🏻zhong)
你的句子会在各层Transformer中经历奇幻漂流:
层级 | 处理阶段 | 示例:“东北老铁咋整” |
---|---|---|
第1层 | 基础语法分析 | 识别"东北"是地名,"老铁"是称谓 |
第6层 | 语义关联挖掘 | 关联"老铁"→"兄弟"→"帮忙" |
第12层 | 文化背景理解 | 结合东北文化推断需要具体建议 |
2.2 注意力矩阵的量子纠缠
当处理到"咋整"时:
Q = query("咋整") # 发出灵魂三问:要啥?啥情况?咋解决?
K = key("老铁") # 回应:是兄弟就来帮我
attention_score = softmax(Q·K/√d) # 计算出0.92的高关联值
注意力热力图 (示意图:显示"咋整"与"老铁"的强相关性)
生成阶段:文字的鱿鱼游戏 🎲
3.1 Softmax概率大逃杀
模型最终输出的是概率分布:
logits = model_output[:, -1, :] # 取出最后一个token的预测结果
probs = softmax(logits) # 转换为概率
可能的结果:
- “锅包肉” → 35%
- “翠花上酸菜” → 28%
- “整个烧烤” → 22%
- …其他 → 15%
3.2 生成策略的三大流派
策略 | 工作原理 | 适用场景 |
---|---|---|
贪心搜索 | 永远选择概率最高的词 | 需要确定性的回答 |
随机采样 | 按概率分布随机选择(可调温) | 创意文本生成 |
束搜索 | 保留多个候选路径综合评估 | 需要连贯长文本 |
温度参数(Temperature)的魔法:
- 高温(1.0+):AI变话痨 → “整点锅包肉?还是铁锅炖大鹅?要不…”
- 低温(0.1-):AI变直男 → “锅包肉”
- 哈尔滨模式(0.0):绝对理性 → 永远输出最高概率词
常见翻车现场与急救指南 🚑
4.1 鬼畜循环:“锅包肉肉肉肉…”
病因诊断:
- 温度过低导致确定性过强
- 重复惩罚机制未开启
急救方案:
generation_config = {
"temperature": 0.7, # 调到沈阳常温
"repetition_penalty": 1.2, # 开启防复读模式
"top_p": 0.9 # 限制选择范围
}
4.2 胡言乱语:“老铁应该量子波动速读”
病因诊断:
- 训练数据污染(混入伪科学内容)
- 上下文窗口过短
解决方案:
- 启用知识检索增强(RAG)
- 添加逻辑约束规则
推理加速秘籍 ⚡
5.1 三阶加速术
技术 | 加速原理 | 效果 |
---|---|---|
KV缓存 | 记忆历史计算避免重复 | 提速2-3倍 |
量化为int8 | 用更小的数字表示模型参数 | 显存占用减半 |
动态批处理 | 同时处理多个用户的请求 | 吞吐量提升5x |
5.2 硬件选择指南
- 筑基期: RTX 4090(24G显存可跑7B模型)
- 金丹期: A100 80GB(轻松驾驭70B大模型)
- 元婴期: TPU Pod集群(真正的赛博修仙)
真理时刻:
经过softmax激活函数最终输出概率,选择过程堪称《鱿鱼游戏》——要么生成"锅包肉",要么跳向"翠花上酸菜"。
如果AI突然开始鬼畜循环,请检查temperature参数(参数不要过低)是不是开成"哈尔滨常温"(零下20℃)❄️
Part 3:扩容秘籍——从筑基到渡劫的飞升指南 🚀
想让你的AI从"人工智障"变成"赛博仙人"?试试这些黑科技:
🔥 参数量爆炸术:
- 堆叠Transformer层数=给AI装多层涡轮增压
- 扩展隐藏层维度=让AI拥有刘谦的魔术脑容量
- 数据灌顶大法:直接喂2TB网络文学,让AI学会"哈基米哈基米"🐱
💸 穷逼友好方案:
- LoRA微调:给AI穿定制卫衣不改造本体
- 知识蒸馏:让GPT-4教小模型玩"盗梦空间"
- RAG外挂:直接给AI手机装百度网盘 ,当然是充了svip的。
⚠️ 渡劫预警:
- 遇到OOM(显存爆炸):你的表情会比《狂飙》强哥还狰狞
- 看到loss值过山车:建议备好速效救心丸
- 发现AI写小黄文:功德-10086
Part 4:LLM的进化论的总结🐉
从预训练到推理优化,LLM的发展史就是一部算力碾压+算法骚操作的史诗。但别忘了,模型再强也逃不过Garbage In, Garbage Out的宿命(数据质量才是爹)