如何从零开始理解LLM训练理论?预训练范式、模型推理与扩容技巧全解析

Part 1:预训练——AI的九年义务教育 📚

想象你往峨眉山猴子面前扔了1000本《五年高考三年模拟》-我那时候还在做的题(海量互联网数据),突然有一天它开口唱起《我在东北玩泥巴》,这有意思的过程就是LLM的预训练范式!这时候你的表情就像“啊这河里吗”,但别急,背后是三大杀招:

1️⃣ 分词赛博炼丹术
文字的量子重组
用tokenizer把"松花江上"炼成[104130, 104104,…]的 数字灵纹,过程堪比:
中文:用菜刀剁碎文言文 → [“松”,“花”,“江”,“上”]
英文:拿激光剑切分单词 → “ChatGPT” → [“Chat”,“G”,“PT”]
二次元:把"哈基米"直接炼成SSR级token✨

这不就是让AI学手语吗?!(手动狗头)

2️⃣ 注意力玄学
文字的量子纠缠
Transformer里每个字都在上演《三体》剧情:

"周杰伦喝奶茶"名场面:
"喝"和"奶茶"用QK矩阵疯狂贴贴(内积值0.87),多头注意力=AI开8个分身同时嗑CP。
位置编码给每个字烙上时空坐标:“奶茶"在第5位=第5维度暗物质,举个栗子🌰:
当AI看到"苹果”——

第一层:🍎红苹果?
第六层:📱乔布斯的苹果?
第十二层:🌍牛顿的苹果??

3️⃣ 反向传播
AI一边做题一边用loss值自我PUA,像极了深夜改论文的你——“这个残差太大必须修正!”。

while training:  
    loss = cross_entropy(pred, label)  # 天道降下九九雷劫  
    optimizer.step()                   # 运转《九转梯度下降大法》  
    if loss < 1.0:                     # 金丹初成!  
        print("AI道友突破筑基期!")  

韩立渡劫:

残差太大 → “这参数必须修正!”(捏碎玉简.jpg)
梯度消失 → “我韩立的灵力呢??”(吐血三升.mp4)
🔑 常见博客的关键词说人话:自监督学习=AI的电子榨菜,Embedding=文字变形术,MLP=信息加工厂


Part 2:模型推理——文字的量子力学实验 (博主自学过狄拉克量子力学)🧪

当AI学成出山开始"显摆知识",整个过程堪称文字的星际穿越。让我们一同探索这个奇妙的旅程。

输入咒语:文字编码的量子化过程 🔮

当你输入如“东北老铁咋整”这样的文本时,AI内部将经历一个复杂的转换流程:

# 代码视角看编码流程
input_text = "东北老铁咋整"
tokens = tokenizer.encode(input_text) # → [2351, 6670, 8853, 10414]
embeddings = lookup_table[tokens] # 每个token变成768维向量
position_emb = add_position(embeddings) # 给每个字打上时空坐标

量子化过程:

  • 原始文本被拆解为token ID(相当于文字DNA)
  • 每个token转化为768维向量(相当于文字的量子态)
  • 加入位置编码:让AI知道"老铁"在第2个位置

注意力狂欢:文字的星际穿越 🌌

2.1 Transformer层的套娃操作(transformer的人话版解析还在✍🏻zhong)

你的句子会在各层Transformer中经历奇幻漂流:

层级处理阶段示例:“东北老铁咋整”
第1层基础语法分析识别"东北"是地名,"老铁"是称谓
第6层语义关联挖掘关联"老铁"→"兄弟"→"帮忙"
第12层文化背景理解结合东北文化推断需要具体建议

2.2 注意力矩阵的量子纠缠

当处理到"咋整"时:

Q = query("咋整") # 发出灵魂三问:要啥?啥情况?咋解决?
K = key("老铁") # 回应:是兄弟就来帮我
attention_score = softmax(Q·K/√d) # 计算出0.92的高关联值

注意力热力图 (示意图:显示"咋整"与"老铁"的强相关性)

生成阶段:文字的鱿鱼游戏 🎲

3.1 Softmax概率大逃杀

模型最终输出的是概率分布:

logits = model_output[:, -1, :] # 取出最后一个token的预测结果
probs = softmax(logits) # 转换为概率

可能的结果:

  • “锅包肉” → 35%
  • “翠花上酸菜” → 28%
  • “整个烧烤” → 22%
  • …其他 → 15%

3.2 生成策略的三大流派

策略工作原理适用场景
贪心搜索永远选择概率最高的词需要确定性的回答
随机采样按概率分布随机选择(可调温)创意文本生成
束搜索保留多个候选路径综合评估需要连贯长文本

温度参数(Temperature)的魔法:

  • 高温(1.0+):AI变话痨 → “整点锅包肉?还是铁锅炖大鹅?要不…”
  • 低温(0.1-):AI变直男 → “锅包肉”
  • 哈尔滨模式(0.0):绝对理性 → 永远输出最高概率词

常见翻车现场与急救指南 🚑

4.1 鬼畜循环:“锅包肉肉肉肉…”

病因诊断:

  • 温度过低导致确定性过强
  • 重复惩罚机制未开启

急救方案:

generation_config = {
    "temperature": 0.7, # 调到沈阳常温
    "repetition_penalty": 1.2, # 开启防复读模式
    "top_p": 0.9 # 限制选择范围
}

4.2 胡言乱语:“老铁应该量子波动速读”

病因诊断:

  • 训练数据污染(混入伪科学内容)
  • 上下文窗口过短

解决方案:

  • 启用知识检索增强(RAG)
  • 添加逻辑约束规则

推理加速秘籍 ⚡

5.1 三阶加速术

技术加速原理效果
KV缓存记忆历史计算避免重复提速2-3倍
量化为int8用更小的数字表示模型参数显存占用减半
动态批处理同时处理多个用户的请求吞吐量提升5x

5.2 硬件选择指南

  • 筑基期: RTX 4090(24G显存可跑7B模型)
  • 金丹期: A100 80GB(轻松驾驭70B大模型)
  • 元婴期: TPU Pod集群(真正的赛博修仙)

真理时刻:
经过softmax激活函数最终输出概率,选择过程堪称《鱿鱼游戏》——要么生成"锅包肉",要么跳向"翠花上酸菜"。

如果AI突然开始鬼畜循环,请检查temperature参数(参数不要过低)是不是开成"哈尔滨常温"(零下20℃)❄️


Part 3:扩容秘籍——从筑基到渡劫的飞升指南 🚀

想让你的AI从"人工智障"变成"赛博仙人"?试试这些黑科技:

🔥 参数量爆炸术

  • 堆叠Transformer层数=给AI装多层涡轮增压
  • 扩展隐藏层维度=让AI拥有刘谦的魔术脑容量
  • 数据灌顶大法:直接喂2TB网络文学,让AI学会"哈基米哈基米"🐱

💸 穷逼友好方案

  • LoRA微调:给AI穿定制卫衣不改造本体
  • 知识蒸馏:让GPT-4教小模型玩"盗梦空间"
  • RAG外挂:直接给AI手机装百度网盘 ,当然是充了svip的。

⚠️ 渡劫预警

  • 遇到OOM(显存爆炸):你的表情会比《狂飙》强哥还狰狞
  • 看到loss值过山车:建议备好速效救心丸
  • 发现AI写小黄文:功德-10086

Part 4:LLM的进化论的总结🐉

从预训练到推理优化,LLM的发展史就是一部算力碾压+算法骚操作的史诗。但别忘了,模型再强也逃不过Garbage In, Garbage Out的宿命(数据质量才是爹)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值