- 博客(4)
- 收藏
- 关注
原创 机器学习第四课
机器学习第四课作业内容代码和解析Logistics Regression代码结果解析SVM模型OVR策略OVR策略的定义使用OVR策略,选择SVM算法进行葡萄酒多分类问题作业内容逻辑斯特回归模型中,策略具体是什么策略,算法具体是哪种算法,模型具体是哪种函数空间?请根据鸢尾花数据,使用逻辑斯特做一个线性分类器在SVM模型中,策略具体是什么策略,算法具体是什么算法,模型具体是哪种函数空间?...
2020-03-23 17:37:46 299
原创 机器学习第三课
机器学习第三课作业内容代码和解析第一题第二题MSE和MAE的区别MSE(Mean Square Error)均方误差。MAE(Mean Absolute Error)平均绝对误差根据不同的情况选择损失函数(MAE&MSE)第三题数据初探数据规整和数据集划分数据建模普通线性回归(Linear Regression)岭回归(Ridge Regression)Lasso回归ElasticNet ...
2020-03-23 13:29:00 285
原创 机器学习第二课
机器学习第二课作业内容代码与解析作业内容不实用sklearnAPI的情况下,对乳腺癌数据进行一系列操作使用pandas读取乳腺癌肿瘤数据的csv文件使用pandas对csv数据中的标签进行转换(就是把csv中的“M”变成1,把“B”变成0)计算csv数据的每个特征的平均值、方差、中位数画出每一个特征的直方图对数据进行数据清洗(具体使用哪种方法,自己进行选择)使用python把cs...
2020-03-22 16:57:17 323
原创 机器学习第一课
机器学习第一课各种概念过拟合和欠拟合模型评估指标正则化交叉验证数据挖掘流程结构化数据各种概念过拟合和欠拟合过拟合就是,通过训练集进行训练的时候,模型学习了太多的背景噪声,让模型的复杂度高于了真实模型(比如看到齿距型的叶子,就觉得不是叶子);欠拟合是指,模型在训练集上进行学习的时候,效果就不是很好,没有充分学习到其中的信息量,复杂度低于真实模型,得到的模型泛化能力差(比如看到绿色,就觉得是叶...
2020-03-22 13:26:46 252
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人