题目: 给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点
示例:
1.
2.
思路分析
一、题中给出的是 BST(二叉搜索树) ,其特点是给定当前结点,其左宝宝小于该结点,右宝宝大于该结点。利用该特点就可以进行分情况讨论
二、从根结点开始修剪:
2.1如果根结点的值小于给定的L,那么该结点的左子树的所有结点值只会比L更小,所以直接返回右子树进行递归判断即可。
2.2如果根结点的值大于给定的R,那么该结点的右子树的所有结点值只会比R更大,故直接返回左子树进行递归判断即可。
2.3如果根节点没问题,处于L与R之间的话,递归判断其左子树与右子树即可。
2.1如果该结点为空结点,则不用特殊处理,即无需修剪,直接返回空节点即可。
三、左右所有结点都修剪完成后,返回自身即可。
算法复杂度分析:
1.时间复杂度:O(N)最坏情况需要遍历全树所有结点。
2.空间复杂度:
Code
class Solution {
public TreeNode trimBST(TreeNode root, int L, int R) {
if (root == null) {
return null;
}
if (root.val > R) {
return trimBST(root.left, L, R);
}
if (root.val < L) {
return trimBST(root.right, L, R);
}
root.left = trimBST(root.left, L, R);
root.right = trimBST(root.right, L, R);
return root;
}
}