给定长度为
n
n
n的序列
a
1
,
a
2
.
.
.
a
n
a_1,a_2...a_n
a1,a2...an.
设可重集
S
=
{
l
c
m
(
a
i
,
a
j
)
∣
1
≤
i
<
j
≤
n
}
S=\{{lcm(a_i,a_j)|1\leq i<j\leq n}\}
S={lcm(ai,aj)∣1≤i<j≤n}.
求出
g
c
d
(
S
)
gcd(S)
gcd(S)
1
≤
n
≤
1
0
5
,
1
≤
a
i
≤
2
∗
1
0
5
1\leq n\leq 10^5,1\leq a_i\leq 2*10^5
1≤n≤105,1≤ai≤2∗105.
思路
分解质因数,记录每个质因子出现的幂次然后考虑贡献
单独考虑一个质因子的贡献:假设
p
p
p这个质因子幂次分别为
k
1
,
k
2
k_1,k_2
k1,k2,那么
l
c
m
(
a
,
b
)
lcm(a,b)
lcm(a,b)中
p
p
p这个质因子的幂次为
m
a
x
(
k
1
,
k
2
)
max(k_1,k_2)
max(k1,k2)