二分查找算法

二分查找算法

二分查找算法是一个非常常用的算法,也能解决很多问题,只要在一个区间内存在一个元素,使得这个数的左边满足某种性质,但是右边不满足这个性质,就可以用二分查找算法找出这个元素。

整数的二分查找

整数的二分查找会产生很多的边界问题

bool check(int);

int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid))
            r = mid;
        else
            l = mid + 1;
    }
    return l;
}

int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid))
            l = mid;
        else
            r = mid - 1;
    }
    return l;
}

第二个模板与第一个模板的差距在于边界条件,简单来说,当mid是由向下取整得到的时候,在区间变换时就一定不能出现l=mid的表述,同样的,当mid是由向上取整得到的时候,在区间变换的时候就一定不能出现r=mid的表述

浮点数的二分查找

浮点数的二分查找不涉及边界问题,较为简单。

示例

3次方根

c++:

#include <iostream>

using namespace std;

int main()
{
    double n;
    scanf("%lf", &n);
    double l = -10000, r = 10000;
    while (r - l >= 1e-8)
    {
        double mid = (l + r) / 2;
        if (mid * mid * mid >= n)
            r = mid;
        else
            l = mid;
    }

    printf("%f", l);
    return 0;
}

python:

n = float(input())
l, r = -10000, 10000.0

while r-l > 1e-12:
    mid = (l+r)/2
    if mid**3 >= n:
        r = mid
    else:
        l = mid

print("%.6f" % (l))

数的范围

#include <iostream>

using namespace std;

const int N = 1000010;

int n, m;
int q[N];

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; i++)
        scanf("%d", &q[i]);
    while (m--)
    {
        int x;

        int l = 0, r = n - 1;
        while (l < r)
        {
            int mid = l + r >> 1;
            if (x <= q[mid])
                r = mid;
            else
                l = mid + 1;
        }
        if (q[l] != x)
            cout << "-1 -1" << endl;
        else
        {
            cout << l << " ";
            int l = 0, r = n - 1;
            while (l < r)
            {
                int mid = l + r + 1 >> 1;
                if (x >= q[mid])
                    l = mid;
                else
                    r = mid - 1;
            }
            cout << l << endl;
        }
    }
    return 0;
}

其他题目

x的平方根 搜索插入位置 猜数字大小

1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。2.网上数据结构和算法的课程不少,但存在两个问题:1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。教程内容:本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。学习目标:通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页