用r语言使用蒙特卡罗方法(分别用随机投点法,平均值估计法,重要抽样法,分层抽样法)计算e^x在(-1,1)上的定积分,并比较各种算法误差

本文使用R语言通过蒙特卡罗方法计算e^x在(-1,1)上的定积分,探讨随机投点法、平均值估计法、重要抽样法和分层抽样法,并比较不同算法的误差。代码示例展示了如何生成随机点、计算积分近似值以及评估误差。实验表明,重要抽样法和分层抽样法通常具有更低的误差。" 7240696,954259,用Python打造浏览器应用:Pyjamas详解,"['Python', 'Javascript', '浏览器开发', 'Pyjamas', 'HTML5']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下是使用R语言实现蒙特卡罗方法计算e^x在(-1,1)上的定积分,以及比较不同算法的误差:

首先定义被积函数为f(x)=exp(x),然后用以下代码生成100000个随机点,并计算它们是否位于(-1,1)之间。最后,将所有落在该区间内的点的f(x)值求和并除以总的点数得到定积分的近似值。

set.seed(123)

n <- 100000
x <- runif(n, -1, 1)
y <- runif(n, 0, exp(1))

count <- sum(y <= exp(x))
integral <- count/n * (2*exp(1))

cat("The estimated integral using random sampling is", integral, "\n")

接下来是平均值估计法,它利用取样的平均值来近似估计目标函数的期望值。代码如下:

set.seed(123)

n <- 100000
x <- runif(n, -1, 1)

integral <- mean(exp(x))

cat("The estimated integral using mean estimation is", integral, "\n")

然后是重要抽样法,它使用一个更适合于函数形状的抽样分布来提高采样效率。以下是使用正态分布作为重要分布的示例代码:

set.seed(123)

n <- 100000

x <- rnorm(n, 0, 1)
y <- exp(x)

integral <- mean(y/exp(0))

cat("The estimated integral using importance sampling is", integral, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值