过拟合与欠拟合

一、概念

过拟合(模型过于复杂):指所建的机器学习模型在训练样本中表现得过于优越,导致在验证数据集以及测试数据集中表现不佳。
欠拟合(模型过于简单):指所建的机器学习模型在训练与测试集中均误差较大
在这里插入图片描述

二、出现原因

(1)过拟合(Overfitting):
过拟合指的是模型在训练数据上表现得非常好,但在未见过的测试数据上表现不佳,它对训练数据过度拟合。
过拟合的主要特征包括:

模型在训练数据上的性能很好,训练误差较低,但在测试数据上的性能较差,测试误差较高。
模型的复杂度较高,通常是因为模型过于灵活,可以匹配数据的噪声。 模型的拟合曲线可能会显示出对训练数据的过度拟合,即曲线波动较大。

导致过拟合的原因可能包括:

模型复杂度过高:选择了过于复杂的模型,可以很好地拟合训练数据中的噪声。
训练数据噪声:训练数据包含噪声或异常值,导致模型学到了错误的模式。
训练数据量太小:对于复杂的模型,需要更多的训练数据来避免过拟合。 缺乏正则化:没有使用正则化方法来控制模型的复杂度。

(2)欠拟合(Underfitting): 欠拟合指的是模型无法捕捉到训练数据中的真实关系,它对数据的拟合程度不足。
欠拟合的主要特征包括:

模型在训练数据和测试数据上的性能都较差,表现为较高的训练误差和测试误差。
模型的复杂度较低,通常是因为模型选择不够复杂,如线性模型用于非线性数据。
模型的拟合曲线通常会显示出拟合不足的特征,即模型不能很好地适应数据的变化。

导致欠拟合的原因可能包括:

模型选择不当:选择了过于简单的模型,无法捕捉数据中的复杂关系。 特征选择不当:未选择足够有信息量的特征,或者特征缺失。
训练数据不足:训练数据量太小,无法代表整个数据分布。 正则化过强:正则化项的系数过大,限制了模型的灵活性。

三、处理办法

防止过拟合(over-fitting):

  1. 获取和使用更多的数据(数据集增强)
  2. 采用合适的模型(控制模型的复杂度)
  3. 降低特征的数量
  4. L1/L2正则化

防止欠拟合(under-fitting) :

  1. 增加特征数;
  2. 增加模型复杂度;
  3. 减小正则化系数。

引用

https://blog.csdn.net/qq_60735796/article/details/132799737

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花开盛夏^.^

道阻且长,行者将至!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值