2021年第十二届蓝桥杯javaB组省赛


以下均为个人想法和解题思路,如有错误或不足,欢迎指正。


试题 A: ASC

本题总分:5 分

  • 【问题描述】

已知大写字母 A 的 ASCII 码为 65,请问大写字母 L 的 ASCII 码是多少?

  • 【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

个人答案:76

个人代码:


public class _ASC {
	
	public static void main(String[] args) {
		System.out.println('L'+0);
	}

}

解题思路:第一题属于签到题,直接输出


试题 B: 卡片

本题总分:5 分

  • 【问题描述】

小蓝有很多数字卡片,每张卡片上都是数字 0 到 9。
小蓝准备用这些卡片来拼一些数,他想从 1 开始拼出正整数,每拼一个,就保存起来,卡片就不能用来拼其它数了。
小蓝想知道自己能从 1 拼到多少。
例如,当小蓝有 30 张卡片,其中 0 到 9 各 3 张,则小蓝可以拼出 1 到 10,
但是拼 11 时卡片 1 已经只有一张了,不够拼出 11。
现在小蓝手里有 0 到 9 的卡片各 2021 张,共 20210 张,请问小蓝可以从 1 拼到多少?
提示:建议使用计算机编程解决问题。

  • 【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

个人答案:3181

个人代码:


import java.util.Arrays;

public class _卡片 {

	public static void main(String[] args) {
		int n = 2021;
		int[] v = new int[10];
		Arrays.fill(v, n);
		for (int i = 1; i < 10000000; ++i) {
			int p = i;
			while (p > 0) {
				int c = p % 10;
				if (v[c] > 0) {
					--v[c];
				} else {
					System.out.println(i - 1);
					return;
				}
				p /= 10;
			}
		}
	}

}

解题思路:暴力


试题 C: 直线

本题总分:5 分

  • 【问题描述】

在平面直角坐标系中,两点可以确定一条直线。如果有多点在一条直线上,
那么这些点中任意两点确定的直线是同一条。
给定平面上 2 × 3 个整点 {(x, y)|0 ≤ x < 2, 0 ≤ y < 3, x ∈ Z, y ∈ Z},即横坐标
是 0 到 1 (包含 0 和 1) 之间的整数、纵坐标是 0 到 2 (包含 0 和 2) 之间的整数
的点。这些点一共确定了 11 条不同的直线。
给定平面上 20 × 21 个整点 {(x, y)|0 ≤ x < 20, 0 ≤ y < 21, x ∈ Z, y ∈ Z},即横
坐标是 0 到 19 (包含 0 和 19) 之间的整数、纵坐标是 0 到 20 (包含 0 和 20) 之
间的整数的点。请问这些点一共确定了多少条不同的直线。

  • 【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

个人答案:40257

个人代码:

import java.util.HashSet;
import java.util.Set;

/**
 *	此代码是根据一位博主的思路编写而得
 * 	前提准备:两点确定一条直线的一般方程为:x*(y1-y2)+y*(x2-x1)+x1*(y2-y1)-y1*(x2-x1) = 0(ax+by+c=0)。
 * 
 * @author HQL
 *
 */
public class Main {

	static Set<String> set = new HashSet<String>();

	public static void main(String[] args) {
		int n = 20, m = 21, num = n * m, gc;

		for (int i = 0; i < num; ++i) {
			int x1 = i / m, y1 = i % m;
			for (int j = 0; j < num; ++j) {
				int x2 = j / m, y2 = j % m;
				if (x1 > x2 && y1 > y2 || i == j || x1 == x2 || y1 == y2)
					continue;
				int a = y1 - y2, b = x2 - x1, c = x1 * (y2 - y1) - y1 * (x2 - x1);
				if (c == 0)
					gc = gcd(a, b);
				else
					gc = gcdx(a, b, c);
				set.add((a / gc) + "-" + (b / gc) + "-" + (c == 0 ? 0 : (c / gc)));
			}
		}
		System.out.println(set.size() + n + m);
	}

	public static int gcdx(int a, int b, int c) {
		return gcd(gcd(a, b), c);
	}

	public static int gcd(int a, int b) {
		if (a == 0 || b == 0)
			return 0;
		return a % b == 0 ? b : gcd(b, a % b);
	}

}

解题思路:数学退步了许多,就连斜率怎么求都不会了,更别说两点确定一条直线的一般方程了,思路来源于https://blog.csdn.net/Supreme7/article/details/115902501,与下面试题C的思路是源自同一位博主


试题 D: 货物摆放

本题总分:10 分

  • 【问题描述】

小蓝有一个超大的仓库,可以摆放很多货物。
现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝
规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、
宽、高。
小蓝希望所有的货物最终摆成一个大的立方体。即在长、宽、高的方向上
分别堆 L、W、H 的货物,满足 n = L × W × H。
给定 n,请问有多少种堆放货物的方案满足要求。
例如,当 n = 4 时,有以下 6 种方案:1×1×4、1×2×2、1×4×1、2×1×2、 2 × 2 × 1、4 × 1 × 1。
请问,当 n = 2021041820210418 (注意有 16 位数字)时,总共有多少种
方案?
提示:建议使用计算机编程解决问题。

  • 【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

个人答案:2430

个人代码:

//此代码是根据一位博主的思路编写而得
public class Main {

	static long[] val = new long[101000];
	static int total = 0;

	public static void main(String[] args) {

		long n = 2021041820210418L, r = (long) Math.sqrt(n);
		int total = 0;
		for (long i = 1; i <= r; i++) {
			if (n % i == 0) {
				val[++total] = i;
				val[++total] = n / i;
			}
		}
		if (r * r == n)
			--total;

		long res = 0;
		for (int i = 1; i <= total; ++i) {
			for (int j = 1; j <= total; ++j) {
				if (n % (val[i] * val[j]) == 0)
					++res;
			}
		}
		System.out.println(res);
	}

}

解题思路:真的能让自己笨死,思路来源于https://blog.csdn.net/Supreme7/article/details/115902501


试题 E: 路径

本题总分:10 分

  • 【问题描述】

小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图
中的最短路径。
小蓝的图由 2021 个结点组成,依次编号 1 至 2021。
对于两个不同的结点 a, b,如果 a 和 b 的差的绝对值大于 21,则两个结点
之间没有边相连;如果 a 和 b 的差的绝对值小于等于 21,则两个点之间有一条
长度为 a 和 b 的最小公倍数的无向边相连。
例如:结点 1 和结点 23 之间没有边相连;结点 3 和结点 24 之间有一条无
向边,长度为 24;结点 15 和结点 25 之间有一条无向边,长度为 75。
请计算,结点 1 和结点 2021 之间的最短路径长度是多少。
提示:建议使用计算机编程解决问题。

  • 【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

个人答案:10266837

个人代码:


import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.Queue;

public class _路径 {

	static ArrayList<Node>[] list;

	public static void main(String[] args) {
		list = new ArrayList[2021 + 1];
		for (int i = 0; i < list.length; ++i)
			list[i] = new ArrayList<Node>();

		for (int i = 1; i <= 2021; ++i) {
			for (int j = i + 1; j <= i + 21 && j <= 2021; ++j) {
				int dis = lcm(i, j);
				list[i].add(new Node(j, dis));
				list[j].add(new Node(i, dis));
			}
		}
		spfa();
	}

	public static void spfa() {
		long[] val = new long[2021 + 1];
		Arrays.fill(val, Integer.MAX_VALUE);
		val[1] = 0;

		Queue<Integer> que = new LinkedList<Integer>();
		que.add(1);

		boolean[] ping = new boolean[2021 + 1];
		ping[1] = true;

		while (!que.isEmpty()) {
			int p = que.poll();
			ping[p] = false;
			for (Node t : list[p]) {
				if (val[t.to] > val[p] + t.dis) {
					val[t.to] = val[p] + t.dis;
					if (!ping[t.to]) {
						ping[t.to] = true;
						que.add(t.to);
					}
				}
			}
		}

		System.out.println(val[2021]);

	}

	public static int gcd(int a, int b) {
		if (a == 0 || b == 0)
			return 0;
		return a % b == 0 ? b : gcd(b, a % b);
	}

	public static int lcm(int a, int b) {
		int gc = gcd(a, b);
		return a * b / gc;
	}

	static class Node {
		int to;
		long dis;

		public Node(int to, long dis) {
			this.to = to;
			this.dis = dis;
		}
	}

}

解题思路:典型的求最短路,spfa是求最短路算法中的一种(最短路径问题—SPFA算法详解


试题 F: 时间显示

时间限制: 1.0s 内存限制: 512.0MB 本题总分:15 分

  • 【问题描述】

小蓝要和朋友合作开发一个时间显示的网站。在服务器上,朋友已经获取
了当前的时间,用一个整数表示,值为从 1970 年 1 月 1 日 00:00:00 到当前时
刻经过的毫秒数。
现在,小蓝要在客户端显示出这个时间。小蓝不用显示出年月日,只需要
显示出时分秒即可,毫秒也不用显示,直接舍去即可。
给定一个用整数表示的时间,请将这个时间对应的时分秒输出。

  • 【输入格式】

输入一行包含一个整数,表示时间。

  • 【输出格式】

输出时分秒表示的当前时间,格式形如 HH:MM:SS,其中 HH 表示时,值
为 0 到 23,MM 表示分,值为 0 到 59,SS 表示秒,值为 0 到 59。时、分、秒
不足两位时补前导 0。

  • 【样例输入】

46800999

  • 【样例输出】

13:00:00

  • 【样例输入】

1618708103123

  • 【样例输出】

01:08:23

  • 【评测用例规模与约定】

对于所有评测用例,给定的时间为不超过 10^18 的正整数。

个人代码:


import java.util.Scanner;

public class _时间显示 {

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		long tt = sc.nextLong();
		tt /= 1000;
		long ss = tt % 60;
		tt /= 60;
		long mm = tt % 60;
		tt /= 60;
		long hh = tt % 24;
		System.out.println(String.format("%02d", hh) + ":" + String.format("%02d", mm) + ":" + String.format("%02d", ss));
	}

}

解题思路:注意读题目,所给得整数是毫秒数,不是秒数,所以要先去除毫秒的那部分,剩下的就逐层取余就好了。


试题 G: 最少砝码

时间限制: 1.0s 内存限制: 512.0MB 本题总分:15 分

  • 【问题描述】

你有一架天平。现在你要设计一套砝码,使得利用这些砝码可以称出任意
小于等于 N 的正整数重量。
那么这套砝码最少需要包含多少个砝码?
注意砝码可以放在天平两边。

  • 【输入格式】

输入包含一个正整数 N。

  • 【输出格式】

输出一个整数代表答案。

  • 【样例输入】

7

  • 【样例输出】

3

  • 【样例说明】

3 个砝码重量是 1、4、6,可以称出 1 至 7 的所有重量。
1 = 1;
2 = 6 − 4 (天平一边放 6,另一边放 4);
3 = 4 − 1;
4 = 4;
5 = 6 − 1;
6 = 6;
7 = 1 + 6;
少于 3 个砝码不可能称出 1 至 7 的所有重量。

  • 【评测用例规模与约定】

对于所有评测用例,1 ≤ N ≤ 1000000000。

个人代码:


import java.util.Scanner;

/**
 * 前四个比较特殊,罗列前20个数据可以发现规律
 * @author HQL
 *
 */
public class _最少砝码 {

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();
		System.out.println(dfs(n));
	}

	/**
	 * 时间和空间复杂度小
	 * @param cur
	 * @return
	 */
	public static int dfs(int cur) {
		if (cur == 1)		
			return 1;
		else if (cur >= 2 && cur <= 4)
			return 2;
		if (cur % 2 == 1) 
			return dfs(cur / 2 + 1) + 1;
		return dfs(cur / 2) + 1;
	}
	
	/**
	 * 效率慢,空间消耗大,但也可以通过一部分评测用例
	 * @param n
	 * @return
	 */
	public static int ffa(int n) {
		int[] dp = new int[n + 10];
		dp[1] = 1;
		dp[2] = 2;
		dp[3] = 2;
		dp[4] = 2;
		for (int i = 5; i <= n; ++i) {
			int ind = i / 2;
			if (i % 2 == 1)
				++ind;
			dp[i] = dp[ind] + 1; 
		}
		return dp[n];
	}

}

解题思路:罗列前面的数据,寻找规律(说明:我找到的规律不能证明是正确的,仅供参考)


试题 H: 杨辉三角形

时间限制: 5.0s 内存限制: 512.0MB 本题总分:20 分

  • 【问题描述】

下面的图形是著名的杨辉三角形:
在这里插入图片描述
如果我们按从上到下、从左到右的顺序把所有数排成一列,可以得到如下
数列:
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, …
给定一个正整数 N,请你输出数列中第一次出现 N 是在第几个数?

  • 【输入格式】

输入一个整数 N。

  • 【输出格式】

输出一个整数代表答案。

  • 【样例输入】

6

  • 【样例输出】

13

  • 【评测用例规模与约定】

对于 20% 的评测用例,1 ≤ N ≤ 10;
对于所有评测用例,1 ≤ N ≤ 1000000000。

个人代码:


import java.util.Scanner;

public class _杨辉三角形 {
	
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();
		System.out.println(ffa(n));
	}
	
	public static int ffa(int n) {
		int[][] dp = new int[2][1000000 + 10];
		dp[0][0] = dp[1][0] = 1;
		int res = 1;
		for (int i = 2; i < 10000000; ++i) {
			int p = i / 2, cur = i % 2, pre = (i - 1) % 2;
			for (int j = 1; j < p; ++j) {
				dp[cur][j] = dp[pre][j] + dp[pre][j - 1];
				if(dp[cur][j] == n) 
					return res + j + 1;
			}
			if (cur == 1) {				//如果当前行是奇数行,则要处理一下最中间的元素
				dp[cur][p] = 2 * dp[pre][p - 1];
				if(dp[cur][p] == n) 
					return res + p + 1;
			}
			res += i;
		}
		return res;		//不会到这一步的,返回什么都行
	}

}

解题思路:这个三角形有对称性,所以只要走左边的一半就行,不用全部都走完。用滚动数组可以降低空间复杂度。


试题 I: 双向排序

时间限制: 5.0s 内存限制: 512.0MB 本题总分:25 分

  • 【问题描述】

给定序列 (a1, a2, · · · , an) = (1, 2, · · · , n),即 ai = i。
小蓝将对这个序列进行 m 次操作,每次可能是将 a1, a2, · · · , aqi 降序排列,
或者将 aqi , aqi+1, · · · , an 升序排列。
请求出操作完成后的序列。

  • 【输入格式】

输入的第一行包含两个整数 n, m,分别表示序列的长度和操作次数。
接下来 m 行描述对序列的操作,其中第 i 行包含两个整数 pi, qi 表示操作
类型和参数。当 pi = 0 时,表示将 a1, a2, · · · , aqi 降序排列;当 pi = 1 时,表示
将 aqi , aqi+1, · · · , an 升序排列。

  • 【输出格式】

输出一行,包含 n 个整数,相邻的整数之间使用一个空格分隔,表示操作
完成后的序列。

  • 【样例输入】

3 3
0 3
1 2
0 2

  • 【样例输出】

3 1 2

  • 【样例说明】

原数列为 (1, 2, 3)。
第 1 步后为 (3, 2, 1)。
第 2 步后为 (3, 1, 2)。
第 3 步后为 (3, 1, 2)。
与第 2 步操作后相同,因为前两个数已经是降序了。

  • 【评测用例规模与约定】

对于 30% 的评测用例,n, m ≤ 1000;
对于 60% 的评测用例,n, m ≤ 5000;
对于所有评测用例,1 ≤ n, m ≤ 100000,0 ≤ ai ≤ 1,1 ≤ bi ≤ n。

个人代码:


import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;

public class _双向排序 {

	static Scanner sc;
	static int n, m;
	static Integer[] r;

	public static void main(String[] args) {
		ffa();
	}

	/**
	 * 暴力解
	 */
	public static void ffa() {
		sc = new Scanner(System.in);
		n = sc.nextInt();
		m = sc.nextInt();

		r = new Integer[n + 1];
		for (int i = 0; i <= n; ++i)
			r[i] = i;

		Comparator<Integer> comparator = new Comparator<Integer>() {
			public int compare(Integer a, Integer b) {
				return b - a;
			}
		};

		for (int i = 0; i < m; ++i) {
			int p = sc.nextInt(), q = sc.nextInt();
			if (p == 0) 
				Arrays.sort(r, 1, q + 1, comparator);
			 else 
				Arrays.sort(r, q, r.length);
		}

		for (int i = 1; i < r.length; ++i)
			System.out.print(r[i] + " ");
	}

}

解题思路:还是太菜,不会,暴力的方式可以通过百分之30的评测用例,也就是7.5分(这比第二题还高分)


试题 J: 括号序列

时间限制: 10.0s 内存限制: 512.0MB 本题总分:25 分

  • 【问题描述】

给定一个括号序列,要求尽可能少地添加若干括号使得括号序列变得合法,
当添加完成后,会产生不同的添加结果,请问有多少种本质不同的添加结果。
两个结果是本质不同的是指存在某个位置一个结果是左括号,而另一个是右括
号。
例如,对于括号序列 (((),只需要添加两个括号就能让其合法,有以下几
种不同的添加结果:()()()、()(())、(())()、(()()) 和 ((()))。

  • 【输入格式】

输入一行包含一个字符串 s,表示给定的括号序列,序列中只有左括号和
右括号。

  • 【输出格式】

输出一个整数表示答案,答案可能很大,请输出答案除以 1000000007 (即
109 + 7) 的余数。

  • 【样例输入】

((()

  • 【样例输出】

5

  • 【评测用例规模与约定】

对于 40% 的评测用例,|s| ≤ 200。
对于所有评测用例,1 ≤ |s| ≤ 5000。

解题思路:还是太菜,不会


~ 如果本篇文章对您有所帮助,不妨点个赞,您的认可是我继续创作的动力,蟹蟹♪(・ω・)ノ

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值