最长公共子序列

本文深入探讨了如何使用动态规划解决最长公共子序列问题。通过实例详细解释了算法思路,包括状态转移方程的建立和二维数组的填充过程,帮助读者理解并掌握这一经典算法。
摘要由CSDN通过智能技术生成
// 最长公共子序列.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//

#include <iostream>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
const int maxn = 100005;
int dp[maxn];
int a[maxn];
int map[maxn];
int b[maxn];
/*
//下面注释的代码由于空间复杂度过高而被放弃,但是是非常好理解的一种形式
//d[i][j]表示到a字符串的第i个字符,到b字符串的第j个字符所有的最长的公共字串
int main()
{
	int n;
	cin >> n;
	memset(dp, 0, sizeof(dp));
	for (int i = 1;i <= n;i++)
	{
		cin >> a[i];
	}
	for (int i = 1;i <= n;i++)
	{
		cin >> b[i];
	}
	//在这里i,j所取得顺序与你的状态转移方程有着密切的关系,我的状态转移方程是与i-1与j-1有着密切联系,当然要从小到大来优化
	for (int i = 1;i <= n;i++)
	{
		for (int j = 1;j <= n;j++)
		{
			if (a[i] == b[j])
			{
				dp[i][j] = dp[i - 1][j - 1] + 1;
			}
			else
			{
				dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
			}
		}
	}
	cout << dp[n][n] << endl;
}*/

int main()
{
	int n;
	cin >> n;
	int len = 0;
	//由于前一个算法暴空间了,所以我们尝试另一种思想,
	//因为这两个字符串是1-n的全排列,所以除了数值位置不同,其他是相同的,我么可以记录下a[i]数组里的数字的所处的位置
	//比如a是 2 3 1 b是 1 2 3 那么2-1,3-2,1-3,我们将求最长公共子序列给转换到求出这两个串各个数字所处位置的最长公共子序列
	//也就是一种贪心的思想,每次往里面加上能取到最小的满足条件的值
	for (int i = 1;i <= n;i++)
	{
		cin >> a[i];
		map[a[i]] = i;
	}
	for (int i = 1;i <= n;i++)
	{
		cin >> b[i];
		dp[i] = 0xfff;
	}
	dp[0] = 0;
	for (int i = 1;i <= n;i++)
	{
		int l = 0, r = len, mid;
		if (map[b[i]] > dp[len]) {
			dp[++len] = map[b[i]];
		}
		else
		{
			//去找这个最小值的时候可以用二分查找去做
			while (l < r)
			{
mid = (l + r) / 2;
			if (dp[mid] > map[b[i]])r = mid;
			else
			{
				l = mid + 1;
			}
			}
			
		}
		dp[l] = min(dp[l], map[b[i]]);
	}
	cout << len << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值