【行业】芯片设计思路的改变

声明

  • 🔥文章目的在于学习记录,知识分享。因个人能力有限:如有错误之处,请帮忙指出;如有疑问,欢迎随时交流
  • 🔥感谢“点评赞”,期待大家提出问题进行深度讨论。
  • 内容如涉及侵权,请及时联系我删除。

芯片首次流片成功率“跳崖式”下降!

两三年前就跟同事聊过这类话题,觉得国内芯片行业在不久的将来就会出现明显质量问题。原因在于:
1.快速的发展将人才分散,原有体系被打破,其中部分人“难当大任”却被拔苗助长。
2.快速发展要求产品研发周期缩短(市场化),而且是基于大芯片的高复杂度、有限的人才储备、验证覆盖率成倍的增加等背景下。
3.最重要的是: 因为 IP 化的发展,以及部分企业成功产品化的经验,导致很多人认为现在的 IC 已经变成了“搭积木”方式,没有什么技术难度。

要不然乐高也分年龄段,且即便每个都提供参考图纸,还是有人拼不出来,或者拼完后发现零件怎么还有剩的。

问题明确了,那我们更应该关注的是在这个背景下,该怎么做好自己的产品。

  1. 尊重客观规律。
  2. 加强人才培养。
  3. 尊重技术,建立良好的体系和文化,打造稳定的团队。

只有生产越多、技术不断迭代、工艺不断优化,再加上管理层的不断改进,日积月累,整个产品才会不断地增强竞争力。

本文完,感谢大家阅读! 

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值