算法-4 数学

辗转相除法(欧几里得算法)

作用 求最大公约数(gcd)

int gcd(int a, int b){
    if(b == 0) return a;
    return gcd(b, a % b)
}

扩展欧几里得算法


素数判定

bool isPrime(int n){
    for(int i = 2; i * i <= n; i++){
        if(n % i == 0) return false;
    }
    return n != 1;
}

埃式筛选(求n以内素数个数)

int prime[MAX_N]
bool isPrime[MAX_N + 1];

int sieve(int n){
    int p = 0; //素数个数
    for(int i = 0; i <= n; i++) isPrime[i] = true;
    isPrime[0] = isPrime[1] = false;
    for(int i = 2; i <= n; i++){
        if(isPrime[i]){
            prime[p++] = i;
            for(int j = 2 * i; j <= n; j += i){
                isPrime[j] = false;
            }
        }
    }
}

区间筛法(挑战程序设计竞赛p120)

模运算

  • (a + b) % p = (a % p + b % p) % p
  • (a - b) % p = (a % p - b % p) % p
  • (a * b) % p = (a % p * b % p) % p
  • 除法不行
  • (a^b) % p = ((a % p)^b) % p

结合率:

  • ((a+b) % p + c) % p = (a + (b+c) % p) % p
  • ((ab) % p * c)% p = (a * (bc) % p) % p

交换率:

  • (a + b) % p = (b+a) % p
  • (a * b) % p = (b * a) % p

分配率:

  • ((a +b)% p * c) % p = ((a * c) % p + (b * c) % p) % p

快速幂

typedef long long ll;
ll mod ;
ll qpow(ll a, ll b) {
    ll res = 1;
    ll base = a;
    while (b != 0) {
        if (b & 1) res = res * a % mod;
        base = base * base % mod
        b >>= 1;
    }
    return res;
}

快速乘

typedef long long ll;
ll mod ;
ll qmul(ll a, ll b){
    ll res = 0;
    while(b != 0){
        if(b & 1) res = (res + a) % mod;
        a = (a + a) % mod;
        n >>= 1;
    }
}

矩阵快速幂

typedef long long ll;
int mod = 1e9 + 7;

//矩阵乘法
vector<vector<ll>> mul(const vector<vector<ll>>& a, const vector<vector<ll>>& b)
{
    vector<vector<ll>> ans(a.size(), vector<ll>(b[0].size(), 0));
        for (int i = 0; i < a.size(); ++i)
        {
            for (int j = 0; j < b[0].size(); ++j)
            {
                for (int k = 0; k < b.size(); ++k)
                {
                    ans[i][j] += a[i][k] * b[k][j];
                    ans[i][j] %= mod;
                }
            }
        }
        return ans;
}
//矩阵a的n次方
vector<vector<ll>> power(vector<vector<ll>> a, int n)
{
    vector<vector<ll>> ans(a.size(), vector<ll>(a.size(), 0));
    for (int i = 0; i < a.size(); ++i)
    {
        ans[i][i] = 1;
    }//单位阵
    while (n != 0)
    {
        if (n & 1)
        {
            ans = mul(ans, a);
        }
        a = mul(a, a);
        n >>= 1;
    }
    return ans;
}
  • 题目:552 1137(感觉好像要根据状态机找出矩阵,然后才能算,之后看看)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Prince_H_23

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值