因果卷积
膨胀卷积
混合膨胀卷积
- 因果卷积:
- 常用于CNN网络处理序列问题
- 因果关系:时间t的状态预测依赖于前t-1个状态。
- 如果想要考虑长距离的变量之间的影响,需要增加卷积层数来增大感受野,但网络过深会导致梯度下降,训练复杂,所以提出了空洞卷积(膨胀卷积)
- 膨胀卷积:
- 在卷积核中增加空洞来增加感受野,不增加过多的计算,但可以使得神经网络在同样的层数下,拥有更大的感受野
- 膨胀系数=1就是普通卷积
- 引入膨胀卷积的原因:卷积网络中一般使用池化卷积来增大感受野,但池化只有一些细节会丢失,后续上采样无法恢复丢失的细节。所以使用了膨胀卷积来替代(膨胀卷积的作用:增大感受野,保持特征的宽和高)
- 空洞卷积存在的问题:卷积核不连续,导致信息连续性损失,引起栅格效应(栅格效应:由于膨胀卷积核不连续,所以不是所有的像素都参与了计算,所以会损失信息的连续性)
- 解决方法是:第一次采用普通卷积(不会丢失底层信息),然后用不同的膨胀系数的卷积核,得到的感受野是一样的,但可以利用更多的信息
- 当用到多个膨胀卷积时,需要设计各卷积核的膨胀系数使其刚好可以覆盖底层特征,于是提出了混合膨胀卷积(HDC)
- 混合膨胀卷积(HDC),对比膨胀卷积主要包含以下特征:
- 非零元素最大距离:膨胀率需要满足:第i层最大的膨胀率=max(第i+1层的膨胀率-2X第i层的膨胀率,第i层的膨胀率)
- 锯齿结构:膨胀率设计成了锯齿状结构,例如[1,2,5,12,5]这样的循环结构
- 公约数不能大于1:叠加的膨胀卷积的膨胀率不能有大于1的公约数(如[2,4,6]),否则会有栅格效应
参考:https://blog.51cto.com/u_15072927/4308099