MI相关--学习笔记

  1. MI(mutual information):
    1. 基于互信息的donsker-varadhan下界,则使用神经网络来估计互信息就转化为了一个优化问题,可以通过梯度上升算法来实现。
    2. 互信息可以看做加强版的 correlation,correlation 只能反映变量之间的线性关系,但是互信息可以进一步反映变量之间的非线性关系;这一点在量化金融里面也非常有用。
    3. 给定一堆相互关联的数据 x 和 z,需要给出这两组数据之间互信息的估计。方法就是训练一个神经网络(statistic network) T,训练目标就是对 Donsker-Varadhan 下界做梯度上升,最后的估计值就是 Donsker-Varadhan 下界在样本上的估计。
    4. 仅仅找出两组数据之间的互信息看起来也并不是特别有用。但是很多应用中会把互信息放入目标函数中,可以使用如下的 statistic network 来得到目标函数相对于输入(x 或者 z)的导数,从而完成梯度的传递。
    5. 互信息可以表示为 KL 散度,而 KL 散度可以写出 Donsker-Varadhan 表示形式;可以看出对于任意的如果目标是 E[f(.)](比如E[log(.)]  )对应的随机梯度算法都是真实梯度的无偏估计;但是这里的目标是 f(E[.]),因此无法得到一个无偏的梯度估计(考虑 Jensen 不等式)。一个 T函数,都对应了互信息的一个下界。
  2. MINE:mutual information neural estimator互信息神经网络估计器
    1. 应用gan:
      1. GAN 有一个问题是 mode-dropping,简单说来就是,生成器很容易只学习到一种能够有效“欺骗”判别器的模式;这样生成器生成出来的数据(比如图片)看起来很真,但是它只会生成这一种(比如实际图片分布有各种图片,但是生成器最后只会生成包含狗的图片)。这里的做法就是把 z 分为两个部分 z=[e,c],然后同时最大化生成图片和 c 之间的互信息。这相当于要求生成的图片尽可能反映 c 的信息(比如给定的 c 如果是某个数字,那么 G 就生成狗;如果是另外的数字,G 就生成猫)。
      2. 通过MINE 方法,可以有效地对于互信息这一项关于 G 求导。实验结果表明,这种方法对应生成出来的数据点更能够有效覆盖整体的原始数据分布。
    2. 应用:Reconstruction(bi-directional adversarial models)仍然考虑 GAN 类似的网络结构,不过现在加入一个 reverse model F。任务目标是给定一个图片(可能被污染了),重构出来这张图片。一个最明显的目标就是最小化重构误差
    3. 应用:Information Bottleneck:Information bottleneck 的目标是找到 x 的一个好的表示,使得这个表示比较 compact 但是也能够很好的预测另外一个变量 y。经过推导,可以得到相应的目标函数,目标函数包含互信息项目。
  3. 信息论相关量之间的关系:
    1. 文氏图:
      1. area:信息的数量
      2. relationship:加减关系
      3. 左圈H(x),右圈H(y),左右两个圈H(x,y)
    2.  定义:
      extropy:H_p=H(x)=-Σ_x p(x)logp(x)
      
      joint extropy:H(x,y)=-Σ_x,y p(x,y)logp(x,y)
      
      conditional extropy: H(x,y)=-Σ_x,y p(x,y)log[p(x,y)/p(x)]
      
      mutual information:l(x,y)=-Σ_x,y p(x,y)log[p(x,y)/(p(x)p(y))]=D_KL  (p(x,y) || p(x)p(y) )
      
      KL 散度(relative entropy):D_KL (p||q) =-Σ_xp(x)log[q(x)/p(x)]
      
      交叉熵:H(p,q)=-Σ_xp(x)log[q(x)]=D_KL (p||q)+H_p
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: mi-Esprit算法是一种用于解决多输入-一输出问题的方法。它是ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) 算法的改进版本。 mi-Esprit算法的基本思想是通过估计信号的非平稳特性实现参数估计。它假设输入信号可以分解为多个非平稳的小段,通过对每个小段进行处理得到参数估计。 mi-Esprit算法的步骤如下: 1. 首先,将输入信号分解为多个非平稳小段,可以使用时频分析方法如短时傅里叶变换来实现。 2. 对每个小段进行ESPRIT算法的过程。ESPRIT算法是一种通过信号的自相关矩阵估计信号参数的方法。 3. 对每个小段的估计结果进行汇总,得到最终的参数估计。 mi-Esprit算法相对于传统的ESPRIT算法有以下优势: 1. mi-Esprit算法采用非平稳分段处理,可以处理非平稳的输入信号,适用范围更广。 2. mi-Esprit算法可以克服传统ESPRIT算法对信号具有高斯分布假设的限制,更适用于处理非高斯分布的信号。 3. mi-Esprit算法的估计精度更高,具有更好的抗噪声能力。 在实际应用中,mi-Esprit算法可以用于各种信号处理任务,如多通道信号的参数估计、方向估计、频率估计等。它在雷达、通信、声学等领域都有广泛的应用。 ### 回答2: mi-esprit算法是一种用于估计信号频率的高精度算法。它是基于ESPRIT算法(Estimation of Signal Parameters via Rotational Invariance Techniques)的改进版本。 mi-esprit算法的核心思想是利用多余两个传感器或接收系统的信号,通过对其差分信号进行处理,进一步降低系统自动相关噪声和干扰,提高频率估计的精度。 与传统的ESPRIT算法相比,mi-esprit算法使用了双谱技术,将传感器信号分为两个导向矢量(指向不同方向的矢量),并通过对它们进行特定处理,得到更精确的频率估计。mi-esprit算法采用了多传感器差分方法,可以高效地抑制环境噪声和其他干扰因素,提取出目标信号的方向信息。 mi-esprit算法具有以下优点: 1. 高分辨率:mi-esprit算法利用双谱技术,可以提高频率估计的分辨率,对信号频率进行更精确的估计。 2. 抗干扰能力强:mi-esprit算法通过多传感器差分方法,可以有效地抑制环境噪声和其他干扰因素,提取出目标信号的方向信息,从而提高估计的准确性。 3. 适用性广泛:mi-esprit算法可以应用于各种需要高精度频率估计的领域,包括通信、雷达、声波及生物医学等领域。 总之,mi-esprit算法通过利用多传感器信号的双谱技术和差分方法,能够提高信号频率的估计精度,具有较好的抗干扰能力,广泛适用于各种领域。 ### 回答3: mi-esprit算法是一种用于估计信号频率的高分辨率频率估计方法。它是根据自适应信号处理理论中的ESPRIT算法发展而来的。mi-esprit算法主要用于多传感器阵列信号处理中的频率估计。 mi-esprit算法的主要步骤如下: 1.数据预处理:首先,对输入信号进行采样,并进行归一化处理,使其能够通过离散傅里叶变换。 2.构建协方差矩阵:通过对接收到的多传感器阵列信号进行协方差矩阵运算,得到协方差矩阵。 3.信号分解:利用协方差矩阵的特殊结构,进行降秩分解,得到信号子空间的估计。 4.参数估计:通过对信号子空间的估计进行特征值分解,得到信号的频率和相位信息。 5.频率估计:根据特征值分解得到的信号频率和相位信息,利用最小二乘法进行频率估计。 mi-esprit算法具有高准确性和良好的抗噪性能,适用于多传感器阵列信号处理领域的频率估计任务。它可以用于雷达、通信系统等领域中对信号频率进行精确估计的应用。 总之,mi-esprit算法是一种高分辨率频率估计方法,利用特殊的信号子空间结构进行频率估计。它在多传感器阵列信号处理中具有重要的应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值