扩展欧几里得

介绍扩展欧几里得算法之前,我们先介绍贝祖定理,即对任意整数 a , b a,b ab,那么一定存在整数 x , y x,y xy,使得 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)

使用欧几里得算法(辗转相除法)我们可知:当到达递归边界时有 b = 0 , a = g c d ( a , b ) b=0,a=gcd(a,b) b=0,a=gcd(a,b),我们可以得到一个式子 a ⋅ 1 + b ⋅ 0 = g c d ( a , b ) , x = 1 , y = 0 a·1+b·0=gcd(a,b),x=1,y=0 a1+b0=gcd(a,b),x=1,y=0,注意这时的 a a a b b b与最开始的 a a a b b b不一样, 所以我们要想求解出最开始的 x x x y y y,就要回到最开始的样式,因为我们这个过程是使用递归算法得到的,所以我们这需要逆向递推,就可以算出最开始的 x x x y y y

上下两层 x x x y y y的关系如下:
因为 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b), b x + ( a % b ) y = g c d ( b , a % b ) bx+(a\%b)y=gcd(b,a\%b) bx+(a%b)y=gcd(b,a%b);
又因为 g c d ( a , b ) = g c d ( b , a % ​ ​ ​ b ) gcd(a,b)=gcd(b,a\%​​​b) gcd(a,b)=gcd(b,a%b);
所以 a x 0 + b y 0 = b x + ( a % b ) y = b x + [ a − ( a / b ) b ] y ax_{0}+by_{0}=bx+(a\%b)y=bx+[a-(a/b)b]y ax0+by0=bx+(a%b)y=bx+[a(a/b)b]y;
a x 0 + b y 0 = a y + b [ x − ( a / b ) y ] ax_{0}+by_{0}=ay+b[x-(a/b)y] ax0+by0=ay+b[x(a/b)y];
所以 x 0 = y y 0 = x − ( a / b ) y x_{0}=y\qquad y_{0}=x-(a/b)y x0=yy0=x(a/b)y ;

typedef long long ll;
ll x, y;
void exgcd(ll a, ll b){//扩展欧几里得算法
    if(b == 0){
        x = 1;
        y = 0;
        return;
    }
    exgcd(b,a%b);
    ll temp = x;//向上推求解最开始的x,y
    x = y;
    y = temp - (a/b) * y;
}

求解任意方程 a x + b y = n ax+by=n ax+by=n的一个整数解

在上面我们证明 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)一定有整数解,进一步利用它来求解任意方程 a x + b y = n ax+by=n ax+by=n,证明如下:

  1. 判断方程 a x + b y = n ax+by=n ax+by=n是否有整数解,有解的条件是 g c d ( a , b ) ∣ n gcd(a,b)|n gcd(a,b)n(即 g c d ( a , b ) gcd(a,b) gcd(a,b)可以整除n);
  2. 用扩展欧几里得算法求 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)的一个解 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0);
  3. a x 0 + b y 0 = g c d ( a , b ) ax_{0}+by_{0}=gcd(a,b) ax0+by0=gcd(a,b)的两边同时乘以 n g c d ( a , b ) \frac{n}{gcd(a,b)} gcd(a,b)n,即 a x 0 n g c d ( a , b ) + b y 0 n g c d ( a , b ) = n ax_{0}\frac{n}{gcd(a,b)}+by_{0}\frac{n}{gcd(a,b)}=n ax0gcd(a,b)n+by0gcd(a,b)n=n;
  4. 对照 a x + b y = n ax+by=n ax+by=n,可得它的一个整数解 ( x 1 , y 1 ) (x_{1},y_{1}) (x1,y1), x 1 = x 0 n g c d ( a , b ) y 1 = y 0 n g c d ( a , b ) x_{1}=x_{0}\frac{n}{gcd(a,b)}\qquad y_{1}=y_{0}\frac{n}{gcd(a,b)} x1=x0gcd(a,b)ny1=y0gcd(a,b)n;
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll x, y;
ll exgcd(ll a, ll b){
    if(b == 0){
        x = 1;
        y = 0;
        return a;
    }
    ll ans = exgcd(b,a%b);
    ll temp = x;
    x = y;
    y = temp - (a/b) * y;
    return ans;
}
int main(){
    ll a, b, n;
    cin >> a >> b >> n;
    ll ans = exgcd(a,b);
    if(n % ans == 0) cout << n/ans*x << " " << n/ans*y << endl;
    //cout << (x*n/ans%(b/ans)+b/ans)%(b/ans) << endl;  x的非负数处理
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星*湖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值