MySQL 高级SQL操作(数据的增、删、改、查)

数据新增

1、批量插入

批量插入:是一种优化数据逐条插入的方式

  • 批量插入数据的语法与简单数据插入的语法差不多

  • 批量插入分为两种:

    • 全字段批量插入: insert into 表名 values(值列表1),(值列表2),...(值列表N);
    • 部分字段批量插入(注意字段默认值): insert into 表名 (字段列表) values (值列表1),(值列表2),...(值列表N);
  • 批量插入可以针对性解决数据的批量导入之类的业务,可以一次性解决多条数据插入,能够有效降低客户端占用问题,提升数据操作效率

    • MySQL8以后默认有事务安全,即批量要么都成功要么都失败,不会出现部分问题

示例

1、批量插入学生成绩(t_1全字段)

insert into t_1 values(null,'Tom','Computer',90),(null,'Lily','Computer',92);

2、批量插入学生考试信息(t_1不包含成绩)

insert into t_1 (stu_name,course) values('Tony','English'),('Ray','Math');

2、蠕虫复制

蠕虫复制:从已有表中复制数据直接插入到另外一张表(同一张表)

  • 蠕虫复制的目标是快速增加表中的数据

    • 实现表中数据复制(用于数据备份或者迁移)
    • 实现数据的指数级递增(多用于测试)
  • 蠕虫复制语法:insert into 表名 [(字段列表)] select 字段列表 from 表名;

  • 注意事项:

    • 字段列表必须对应上
    • 字段类型必须匹配上
    • 数据冲突需要事先考虑

示例

1、创建一张新表,将t_1表中的数据迁移到新表t_2中

create table t_1(
	id int primary key auto_increment,
    stu_name varchar(20) not null,
    course varchar(20) not null,
    score decimal(5,2)
)charset utf8;

insert into t_2 select * from t_1;

2、快速让t_2表中的数据增长(重复执行)

insert into t_2 (stu_name,course,score) select stu_name,course,score from t_2;

3、主键冲突

主键冲突:在数据进行插入时包含主键指定,而主键在数据表已经存在

  • 主键冲突的业务通常是发生在业务主键上(业务主键本身有业务意义)

  • 主键冲突的解决方案:

    • 忽略冲突:保留原始记录: insert ignore into 表名 [(字段列表)] values(值列表);
    • 冲突更新:冲突后部分字段变成更新: insert into 表名 [(字段列表)] values(值列表) on duplicate key update 字段 = 新值[,字段=新值...];
    • 冲突替换:先删除原有记录,后新增记录: replace into 表名 [(字段列表)] values(值列表); # 效率没有insert高(需要检查是否冲突)
  • 从效率上来讲,insert into不考虑冲突的效率最高,三种解决冲突的方式都会有效率下降(需要检索),其中三种本身的效率依次是:忽略新数据 > 更新部分数据 > 替换全部

示例

1、用户名作为主键的用户注册(冲突不能覆盖):username,password,regtime

create table t_3(
	username varchar(50) primary key,
    password char(32) not null,
    regtime int unsigned not null
)charset utf8;

insert into t_3 values('username','password',12345678);
# 冲突忽略
insert ignore into t_3 values('username','12345678',12345678);

2、用户名作为主键的记录用户使用信息(不存在新增、存在则更新时间):username,logintime

create table t_4(
	username varchar(50) primary key,
    logintime int unsigned
)charset utf8;

insert into t_4 values('username',12345678);	# 当前时间戳

# 冲突更新(替换部分字段数据)
insert into t_4 values('username',12345678) on duplicate key update logintime = unix_timestamp();	# 当前时间戳
  • 如果主键不冲突:新增
  • 如果主键冲突:更新指定字段
  • 上述方式适用于字段较多,但是可能冲突时数据变化的字段较少

3、用户名作为主键的记录用户使用信息(不存在新增、存在则更新全部):username,logintime、clientinfo

create table t_5(
	username varchar(50) primary key,
    logintime int unsigned,
    clientinfo varchar(255) not null
)charset utf8;

insert into t_5 values('username',unix_timestamp(),'{PC:chrome}');

# 替换插入
replace into t_5 values('username',unix_timestamp(),'{phone:uc}');
  • replace遇到主键重复就会先删除、后新增
  • 如果有较多字段需要更新:建议使用替换

数据查询

1、查询选项 distinct

查询选项:用于对查询结果进行简单数据筛选

  • 查询选项是在select关键字之后,有两个互斥值
    • all默认,表示保留所有记录(关键字可以没有)
    • distinct:去重,重复的记录(针对所选字段构成的记录,而不是某个字段)

示例

1、查看商品表中所有品类的商品信息:重复的商品只保留一次(名字、价格、属性都一致)

create table t_6(
	id int primary key auto_increment,
    goods_name varchar(50) not null,
    goods_price decimal(10,2) default 0.00,
    goods_color varchar(20),
    goods_weight int unsigned comment '重量,单位克'
)charset utf8;

insert into t_6 values(null,'mate10',5499.00,'blue',320),
(null,'mate10',5499.00,'gray',320),
(null,'nokia3301',1299,'black',420);

# 考虑所有字段的去重(不含逻辑主键)
select distinct goods_name,goods_price,goods_color,goods_weight from t_6;
select goods_name,goods_price,goods_color,goods_weight from t_6; # 保留所有

# 不考虑颜色去重
select distinct goods_name,goods_price,goods_weight from t_6;
select all goods_name,goods_price,goods_weight from t_6;

2、字段选择&别名 as

字段选择:根据实际需求选择的要获取数据的字段信息

  • 根据实际需求,明确所需要的字段名字,使用英文逗号,分隔

  • 获取所有字段,使用星号*通配所有字段

  • 字段数据可以不一定是来自数据源(select只要有结果即可)

    • 数据常量:select 1
    • 函数或者变量:select unix_timestamp(),@@version (@@是系统变量的前缀,后面跟变量名)
  • 字段的选择只要在保证数据需求能实现的情况下,尽可能少使用*代替(MySQL优化)

    • 减少服务器的数据读取压力
    • 减少网络传输压力
    • 让客户端能够精确解析数据(不用大海捞针)

字段别名:给字段取的临时名字

  • 字段别名使用as语法实现:
    • 字段名 as 别名
    • 字段名 别名
  • 字段别名的目的通常为了保护数据
    • 字段冲突:多张表同时操作有同名字段(系统默认覆盖),想保留全部
    • 数据安全:对外提供数据不使用真实字段名字
  • 字段别名的灵活使用一方面可以保证原始数据的安全,也可以为数据使用者提供便利
    • 同名字段覆盖问题(连表操作学习时会遇到)
    • 原始字段保护
    • 数据字段的简化
  • select是SQL中用于取出数据的一种指令,这种指令未必一定需要从数据表取出数据,只要是本身能够有数据的表达式,都可以使用select获取

示例

1、查询商品信息

# 全部查询
select * from t_6;

# 需求为商品名字和价格
select goods_name,goods_price from t_6;

# 别名使用
select goods_name as gn,goods_price gp from t_6;

2、不需要数据源的数据获取:select的表达式本身能算出结果)

# 获取当前时间戳和版本号
select unix_timestamp() as now,@@version as version,@@version;

3、数据源 from

数据源from关键字之后,数据的来源。只要最终结果是一个二维表,都可以当做数据源

  • 单表数据源:数据源就是一张表 from 表名

  • 多表数据源:数据来源是多张表(逗号分隔) from 表名1,表名2,...表名N

  • 子查询数据源:数据来源是一个查询结果 from (select 字段列表 from 表名) as 别名

    • 数据源要求必须是一个
    • 如果是查询结果必须给起一个表别名
  • 数据表也可以指定别名

    • 表名 as 别名
    • 表名 别名
  • 数据源是为查询、检索提供数据支持的,使用时需要明确指定

  • 通常情况下数据源不会使用简单的多表数据源(笛卡尔积)

  • 数据表的别名在负责SQL查询操作时非常有用,而且有些地方是必须使用(如子查询数据源)

示例

1、单表数据源:最简单的数据源,直接从一个数据表获取

select * from t_7;

2、多表数据源:利用一张表的一条数据匹配另外一张表的所有记录,记录结果为:

  • 记录数 = 表1记录数 * 表2记录数
  • 字段数 = 表1字段数 + 表2字段数(笛卡尔积)
select * from t_7,t_8;

3、子查询数据源:数据来源是一个select对应的查询结果

  • 查询语句需要使用括号包裹
  • 查询结果需要指定别名
select * from (select * from t_7,t_8) t; # 数据有冲突查不出来
select * from (select * from t_7) as t;

4、如果有时候名字较长或者使用不方便,可以利用表别名

select * from t_1 as t;

select t1.*,t2.stu_name from t_1 as t1,t_2 t2;
  • 一般情况下别名设置是为了后续条件中可以直接使用别名
  • 如果多表操作下,可以使用表别名来明确提取表字段

4、where子句

where子句:跟在from数据源之后,对数据进行条件匹配,筛选数据的

  • where是在磁盘读取后,进入内存之前进行筛选
    • 不符合条件的数据不会进入内存
  • where筛选的内容因为还没进入内存,所以数据是没有被加工过
    • 字段别名不能在where中使用

示例

1、查询t_5表中学生为lily的成绩信息

select * from t_5 where stu_name = 'Lily';

2、因为where是在磁盘取数据时进行条件筛选,此时数据没有进入内存,所以字段别名是无效的

# 错误 
select stu_name name,score from t_5 where name = 'Lily';

运算符:用于进行运算的符号

  • 运算符可以用来进行字段数据运算,配合where进行条件筛选
  • 比较运算符
    • >(大于)、<(小于)、=(等于)、>=(大于等于)、<=(小于等于)、<>(不等于)
    • between A and B:A和B之间(A小于B),包括A和B本身(数值比较)
    • in (数据1,数据2,...数据N):在列举的数据之中
    • like 'pattern':像上面样的,用于字符串比较
      • _:单下划线,匹配对应位置的一个任意字符(ab_:ab开头+一个字符,匹配abc,ab1,但不能匹配abcd)
      • %:匹配当前位置(往后)任意数量任意字符(ab%:ab开头+任意数量任意字符,匹配abc,ab1,abcd)
  • 逻辑运算符
    • and(逻辑与)、or(逻辑或)、not(逻辑非)
  • null运算符
    • is null(为空)、is not null(不为空)

示例

1、查询成绩不及格的所有学生信息

# 成绩条件:成绩是数值,又是比大小,可以直接使用比较运算符
select * from t_5 where score < 60;

2、查询成绩在60-90间的学生信息

# 成绩条件:区间60到90,可以有两种解决方案
select * from t_5 where score between 60 and 90;
select * from t_5 where score >= 60 and score <= 90;

3、查询还没有成绩的学生

# 成绩条件:成绩为null,所以不能用比较符号查,只能使用is null实现
select * from t_5 where score is null;

5、group by子句

group by子句:分组统计,根据某个字段将所有的结果分类,并进行数据统计分析

  • 分组的目的不是为了显示数据,一定是为了统计数据
  • group by 子句一定是出现在where子句之后(如果同时存在)
  • 分组统计可以进行统计细分:先分大组,然后大组分小组

聚合函数:

  • 分组统计需要使用统计函数:
    • group_concat():将组里的某个字段全部保留
    • any_value():不属于分组字段的任意一个组里的值
    • count():求对应分组的记录数量
      • count(字段名):统计某个字段值的数量(NULL不统计)
      • count(*):统计整个记录的数量(较多)
    • sum():求对应分组中某个字段是和
    • max()/min():求对应分组中某个字段的最大/最小值
    • avg():求对应分组中某个字段的平均值
  • 分组统计使用数据数据的查询只能依赖统计函数和被分组字段,而不能是其他字段(MySQL7以前可以,不过数据没意义:因为系统只保留组里的第一个)

示例

1、创建一张表,存储学生信息

create table t_0(
	id int primary key auto_increment,
	name varchar(10) not null,gender enum('男','女','保密'),
	age tinyint unsigned not null,
	class_name varchar(10) not null comment '班级名称'
)charset utf8;

insert into t_0 values
(null,'鸣人','男',18,'木叶1班'),(null,'佐助','男',18,'木叶1班'),(null,'佐井','男',19,'木叶2班'),
(null,'大蛇丸','男',28,'木叶0班'),(null,'卡卡西','男',29,'木叶0班'),(null,'小樱','女',18,'木叶1班'),
(null,'雏田','女',18,'木叶1班'),(null,'我爱罗','男',19,'木叶1班'),(null,'向日葵','女',6,'木叶10班'),
(null,'博人','男',8,'木叶10班'),(null,'鼬','男',28,'木叶0班');

2、统计每个班的人数

select count(*),class_name from t_0 group by class_name;

3、多分组:统计每个班的男女学生数量

select count(*),class_name,gender from t_0 group by class_name,gender;

4、统计每个班里的人数,并记录班级学生的名字

select count(*),group_concat(name),class_name from t_0 group by class_name;
select count(*),any_value(name),class_name from t_0 group by class_name;

分组原理:

以统计班级学生为例

木叶1班
木叶2班
木叶0班
木叶10班
获取数据后分组开始
匹配班级名字分组
木叶1班组
鸣人
佐助
小樱
雏田
我爱罗
木叶2班组
佐井
木叶0班组
大蛇丸
卡卡西
木叶10班组
博人
向日葵
统计结果
只对结果负责
结果就是函数,而函数只对小组工作
木叶1班组5人 木叶2班组1人 木叶0班组3人 木叶10班组2人
返回结果
分组结束

回溯统计:在进行分组时(通常是多分组),每一次结果的回溯都进行一次汇总统计

  • 回溯统计语法:在统计之后使用 with rollup
  • 回溯统计一般用在多字段分组中,用来统计各级分组的汇总数据
  • 因为回溯统计会将对应的分组字段置空(不置空无法合并),所以回溯的数据还需要经过其他程序语言加工处理才能取出数据来

示例

统计每个班的男女同学数量,同时要知道班级人数总数

# 只统计每个班的男女同学数量,没有班级汇总
select count(*),class_name,gender,group_concat(name) from t_40 group by class_name,gender;
# 汇总统计:回溯
select count(*),class_name,gender,group_concat(name) from t_40 group by class_name,gender with rollup;

回溯统计原理:

木叶1班
木叶2班
木叶0班
木叶10班
统计开始
大分组:班级名字分组
木叶1班组
鸣人
佐助
小樱
雏田
我爱罗
木叶2班组
佐井
木叶0班组
大蛇丸
卡卡西
木叶10班组
博人
向日葵
小分组:性别分组
木叶1班组:男
鸣人
佐助
我爱罗
木叶1班组:女
小樱
雏田
小分组:性别分组
木叶2班组:男
佐井
小分组:性别分组
木叶0班组:男
大蛇丸
卡卡西
小分组:性别分组
木叶10班组:男
博人
木叶10班组:女
向日葵
性别回溯
木叶1班组:NULL
鸣人
佐助
小樱
雏田
我爱罗
性别回溯
木叶2班组:NULL
佐井
性别回溯
木叶0班组:NULL
大蛇丸
卡卡西
性别回溯
木叶10班组:NULL
博人
向日葵
班级名字回溯
NULL:NULL
全部人
回溯统计结束

分组排序:在分组后统计结果时可以根据分组字段进行升序或者降序显示数据

  • 默认的系统就会自动对分组结果根据分组字段进行升序排序
  • 可以设定分组结果的排序方式
    • group by 字段名 [ASC]:升序排序(默认)
    • group by 字段名 DESC:降序排序

示例

1、对分组结果女性优先显示:gender为枚举,男值为1,女值为2

select count(*),class_name,gender,group_concat(name),any_value(name) 
from t_0 group by class_name,gender desc;

6、having子句

having子句:类似于where子句,是用来进行条件筛选数据的

  • having 子句本身是针对分组统计结果进行条件筛选的,但是本质是针对分组统计,如果没有分组统计,不要使用having进行数据筛选
  • having子句必须出现在group by子句之后(如果同时存在)
  • having针对的数据是在内存里已经加载的数据
  • having几乎能做where能做的所有事,但是where却不一定
    • 字段别名(where针对磁盘数据,那时还没有)
    • 统计结果(where在group by之前)
    • 分组统计函数(having通常是针对group by存在的)
  • 但是能用where解决问题的地方绝不使用having
    • where针对磁盘读取数据,源头解决问题
    • where能够限制无效数据进入内存,内存利用率较高,而having是针对内存数据筛选

示例

1、获取班级人数小于3的班级

select count(*) as count,class_name,group_concat(name) from t_0 group by class_name having count < 3;

# 多用了一次函数(效率降低)
select count(*) as count,class_name,group_concat(name) from t_0 group by class_name having count(*) < 3;

# 没办法,前面没统计,只能自己统计
select class_name,group_concat(name) from t_0 group by class_name having count(*) < 3; 

7、order by子句

order by子句:排序,根据某个指定的字段进行升序或者降序排序

  • 排序的参照物是校对集
  • 排序是针对前面所得到的结果进行排序 (已经进入到内存的数据)
  • order by子句在having子句字后(如果同时存在)
  • 排序分为升序和降序:默认是升序
    • order by 字段 [ASC]:升序
    • order by 字段 DESC:降序
  • 多字段排序:是在第一个字段排好序的情况下,不改变原来排序的基调后,再小范围排序(类似分组)
  • 实际开发中排序的使用非常常见,尤其是在数值、时间上多见

示例

1、单字段排序:给所有学生按照年纪大小升序排序

select * from t_0 order by age;
select * from t_0 order by age asc;

2、多字段排序:先性别降序排序,然后按年龄升序排序

select * from t_40 order by gender desc,age;
select * from t_40 order by gender desc,age asc;

8、limit子句

limit子句:限制数据的获取数量(记录数)

  • limit 子句必须在order by子句之后(如果同时存在)

  • limit限制数量的方式有两种:

    • limit 数量:限制获取的数量(不保证一定能获取到指定数量)
    • limit 起始位置,数量:限制数据获取的位置以及数量(分页)
  • limit限制数量可以有效的减少服务器的压力和传输压力

  • 常利用limit来实现分页获取数据

示例

1、获取t_0表中前3条数据

select * from t_0 limit 3;

2、获取t_0表中第3条以后的3条数据

select * from t_0 limit 3,3;select * from t_0 limit 6,3;

数据查询总结:

  • 查询操作是所有操作里使用的最多也是最终的操作

  • 查询操作的完整语法:select select选项 字段列表[别名] /* from 数据源[别名] where子句 group by子句 having子句 order by子句 limit 子句;

    • 各个位置的顺序不能调换
    • 五子句(where、group by、having、order by、limit)可以没有,但是出现后一定要保证顺序
    • group by到最后都是针对已经加载带内存中的数据进行加工处理
  • 很多结构的组合其实可以达到同一效果,但是可能过程和效率会不同

数据更新

1、限制更新

限制更新:即更新时对更新的记录数进行限制

  • 限制更新通过 limit 来实现,来完成批量小范围操作
  • 限制更新其实是局部更新的一种手段,实际开发当中,极少出现这类操作,一般都愿意精准操作(利用where条件明确更新条件)
  • 更新操作不可逆

示例

1、对会员选3个发送10元红包(添加到账户)

create table t_1(	
	id int primary key auto_increment,    
	username varchar(50) not null unique,    
	password char(32) not null,    
	account decimal(10,2) default 0.00
)charset utf8;
	
insert into t_1 values(null,'username1','password',default),
(null,'username2','password',default),
(null,'username3','password',default),
(null,'username4','password',default),
(null,'username5','password',default);

update t_1 set account = account + 10 limit 3;

数据删除

1、限制删除

限制删除:限制要删除的记录数

  • 使用 limit 限制删除数量
  • 限制删除本质也是删除,操作不可逆,谨慎使用
  • 一般很少使用限制删除,通常是通过where条件精确删除

示例

1、删除没有账户余额的一个用户(当前用户量少,一般数量会大些)

delete from t_1 where account = 0 limit 1;

2、清空数据

清空数据:将表中的所有数据清除,并且将表的所有状态回到原始状态

  • 清空数据的本质是先删除表,后创建表
  • 清空数据能够让表的一些变化状态回到原始状态
    • 自增长重新回到初始值
  • 清空语法: truncate 表名
  • 清空数据表是一种比delete更彻底的数据删除方式,所以使用之前必须要慎重
  • 一般只会在开发阶段才会使用这种数据删除操作,如表数据发生错乱,或者业务发生变化

示例

1、清空用户数据表

truncate t_1;
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值