1.古典概型:
特点:试验的样本空间只包含有限个元素;试验中的每个基本事件发生的可能性相等。
概率计算公式:设试验E的样本空间S由N个样本点构成,A为E的任意一个事件,且包含m个样本点,则事件A出现的概率为
P(A) = A中包含样本的数量/S中基本事件的总数=m/n
-
盒中取球:设盒中有N个球,其中有M个红球,从中有放回的任意抽N个球,则这N个球中恰有K个红球的概率为
p = $\frac{C_nkMk(N-M){(n-k)}}{Nn} $
不放回的任意抽n个球,则这N个球中恰有K个红球的概率为:
p = C M k C N − M n − k C N n p = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n} p=CNnCMkCN−Mn−k
投球入盒:将n只球随机地放入N个盒子去,试求每个盒子至多有一只球的概率(设盒子的容量不限):
p = N ( N − 1 ) . . . ( N − n + 1 ) N n \frac{N(N-1)...(N-n+1)}{N^n} NnN(N−1)...(N−n+1)
分组问题:
无序分组:一般地,把n个元素随机地分成无序的m组(n>m),要球每组k个元素,共有分法:
C n k C n − k k . . . C n − m k k m ! \frac{C_n^k C_{n-k}^k ...C_{n-mk}^k}{m!} m!CnkCn−kk...Cn−mkk= n ! ( k ! ) m m ! \frac{n!}{(k!)^mm!} (k!)mm!n!
有序分组:一般地,把n个元素随机地分成有序的m组(n>m),要球第i组有 n i n_i ni个元素(i=1,…m),共有分法:
C n n 1 C n − n 1 n 2 . . . C n m n m = n ! n 1 ! . . . n m ! C_n^{n_1}C_{n-n_1}^{n_2}...C_{n_m}^{n_m} = \frac{n!}{n_1!...n_m!} Cnn1Cn−n1n2...Cnmnm=n1!...nm!n!
1.几何概型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
几何概型与古典概型的异同:
相同点:等可能性
不同点:几何概型有无限性,古典概型具有有限性。
2.几何概型的概率计算公式:
p ( A ) = 构 成 事 件 A 的 测 度 ( 区 域 长 度 , 面 积 或 体 积 ) 试 验 的 全 部 结 果 所 构 成 的 测 度 ( 区 域 长 度 , 面 积 或 体 积 ) p(A) = \frac{构成事件A的测度(区域长度,面积或体积)}{试验的全部结果所构成的测度(区域长度,面积或体积)} p(A)=试验的全部结果所构成的测度(区域长度,面积或体积)构成事件A的测度(区域长度,面积或体积)
记作 p ( A ) = m ( A ) m ( Ω ) p(A)=\frac{m(A)}{m(\Omega)} p(A)=m(Ω)m(A)
3.请你举出一个几何概型试验的例子。
投一支飞镖,落在靶心的概率
请思考蒲丰是如何通过投针实验计算圆周率的。平面上画有等距离为a(a>0)的一些平行直线,现向此平面任意投掷一根长为b( b<a )的针,试求针与某一平行直线相交的概率,并以此求出圆周率计算公式。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DSOYJ0Ns-1636285253205)(E:\markdowm\v2-2c129b744aecfde2a9bd10d891a1c5cd_r.jpg)]
1)什么是条件概率?如何计算条件概率?条件概率有哪些性质?利用条件概率计算上述“已知这个家庭有一个是女孩问这是另一个孩子是男孩的概率是多少”的概率问题。
条件概率:在一个事件已经发生的条件下,另一个事件发生的概率。
条件概率的计算:设A,B是两个事件,且 p ( A ) > 0 p(A)>0 p(A)>0,称 p ( B ∣ A ) = p ( A B ) p ( A ) p(B|A)=\frac{p(AB)}{p(A)} p(B∣A)=p(A)p(AB)
条件概率的性质:
非负性: p ( A ∣ B ) > = 0 p(A|B)>=0 p(A∣B)>=0
规范性: p(S|B) = 1,p( ϕ ∣ B \phi|B ϕ∣B)=0
p( A 1 ⋃ A 2 ∣ B A_1\bigcup A_2|B A1⋃A2∣B)=p( A 1 ∣ B A_1|B A1∣B)+ p ( A 2 ∣ B ) − p ( A 1 A 2 ∣ B ) ; p(A_2|B)-p(A_1A_2|B); p(A2∣B)−p(A1A2∣B);
p(A|B)=1-P( A ‾ \overline{A} A|B)
利用条件概率计算上述“已知这个家庭有一个是女孩问这是另一个孩子是男孩的概率是多少”的概率问题。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SGDWMdGx-1636285263587)(C:\Users\二月\AppData\Roaming\Typora\typora-user-images\image-20210306205133331.png)]
2)什么是乘法定理?如何由条件概率推导得到?
乘法定理:设 p(A)>0,则有p(AB)=p(B|A)p(A)
由条件概率的定义: p ( B ∣ A ) = p ( A B ) p ( A ) p(B|A)=\frac{p(AB)}{p(A)} p(B∣A)=p(A)p(AB)推理得到
3)什么是样本空间的划分?在对样本空间划分(即实验结果分类)的基础上,在笔记本上推导全概率公式和贝叶斯公式。
样本空间的划分:设S为试验E的样本空间, B 1 , B 2 , B 3 . . . B n B_1,B_2,B_3...B_n B1,B2,B3...Bn为E的一组事件,若
(i) B i B j B_iB_j BiBj= ϕ \phi ϕ, i ≠ j i\ne j i=j ,i,j=1,2,…n;
(ii) B 1 ∪ B 2 ∪ B 3 . . . ∪ B n = S B_1 \cup B_2 \cup B_3...\cup B_n =S B1∪B2∪B3...∪Bn=S
则称 B 1 , B 2 , . . . B n B_1,B_2,...B_n B1,B2,...Bn为样本空间S的一个划分
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VAnTddtU-1636285263590)(file:///E:\qq\1156605275\Image\C2C\46A0EBFAAE004946F62560435B7CDD1E.jpg)]