声明
本文资料参考acwing算法基础课
地址:https://www.acwing.com
数组
概述
- 解决问题:求一个数组中部分连续数的和
- 初始化时间复杂度为O(n),求解时间复杂度为O(1)
模板记忆
这个模板分为两个部分:
- 输入:s[i] = s[i - 1] + a[i]
- 输出:s[r] - s[l - 1]
注意的点:s和a都从1开始
模板代码
// 输入
for (int i = 1; i <= n ;i ++ ) s[i] = s[i - 1] + a[i];
// 输出
printf("%d\n",s[r] - s[l - 1]);
矩阵
概述
- 解决问题:求一个矩阵中一块数的和
- 初始化时间复杂度为O(n*n),求解时间复杂度为O(1)
模板记忆
这个模板分为两个部分:
- 输入:s [ i ] [ j ] = s[ i - 1 ] [ j ] + s[ i ][ j - 1 ] - s[ i - 1 ][ j - 1 ] + a[ i ][ j ]
- 输出:s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]
注意的点:s和a都从1开始
模板代码
// 输入
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
s[i][j] = a[i][j] + s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
// 输出
printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);