【算法基础课模板笔记+注释】 基础算法08 ---前缀和

声明

本文资料参考acwing算法基础课
地址:https://www.acwing.com

数组

概述
  1. 解决问题:求一个数组中部分连续数的和
  2. 初始化时间复杂度为O(n),求解时间复杂度为O(1)
模板记忆

这个模板分为两个部分:

  1. 输入:s[i] = s[i - 1] + a[i]
  2. 输出:s[r] - s[l - 1]

注意的点:s和a都从1开始

模板代码
// 输入
for (int i = 1; i <= n ;i ++ ) s[i] = s[i - 1] + a[i];
// 输出
printf("%d\n",s[r] - s[l - 1]);

矩阵

概述
  1. 解决问题:求一个矩阵中一块数的和
  2. 初始化时间复杂度为O(n*n),求解时间复杂度为O(1)
模板记忆

这个模板分为两个部分:

  1. 输入:s [ i ] [ j ] = s[ i - 1 ] [ j ] + s[ i ][ j - 1 ] - s[ i - 1 ][ j - 1 ] + a[ i ][ j ]
  2. 输出:s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]

注意的点:s和a都从1开始

模板代码
// 输入
for (int i = 1; i <= n; i ++ )
    for (int j = 1; j <= m; j ++ )
        s[i][j] = a[i][j] + s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
// 输出
printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值