动态规划—子序列和 大致思想运行代码int maxSubArray(int* nums, int numsSize){ int maxN=nums[0]; for(int i=1;i<numsSize;i++){ if(nums[i-1]>0) nums[i] += nums[i-1]; if(nums[i]>maxN) maxN = nums[i]; } return maxN;..
dfs—求组合 dfs实现组合型枚举题目描述:题解代码:#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int N = 1e5;int way[N];int n,m;void dfs(int u,int start){ if(u==m){ for(int i=0;i<m;i++) printf("
数学—埃及分数式 埃及分数式题目描述:设计要点:设计步骤题解代码:#include<iostream>#include<cstring>#include<cstdio>#include<algorithm>using namespace std;const int N = 1e5;int a,b,c;int f[N];int main(){ scanf("%d%d",&a,&b); // 首先查看是否原数值是否满足 if(b
贪心—删除数字 删除数字题目描述:题解思路:存取方式:用字符数组输入,由整数数组存储,每个元素范围为0~9删除元素思路:判断前一个数与后一个数比较,若后一个数大则前一个数置为-1输出思路:由于要删除的元素个数已经确定,所以输出的元素也确定,所以从前往后输出不为-1的n-k个元素(比如987654 要删除3个元素,所以只需要n-k个元素,其余元素不做操作)题解代码:#include<iostream>#include<cstdio>#include<cstring>#
数学—阶乘约数(蓝桥) 阶乘约数题目描述:方法:任意一个正整数 X 都可以表示成若干个质数乘积的形式,即 X = p1α1 ∗ p2α2∗…* pkαk约数个数=(a1 + 1)(a2 + 1)……(ak + 1)代码:// 答案39001250856960000#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int
DP—最长非降子序列连续与不连续 最长非降子序列(连续)问题描述:运行代码:#include<iostream>#include<cstring>#include<cstdio>#include<algorithm>using namespace std;const int N = 1e4;int a[N],b[N];int n;int main(){ scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d",&a
特征选择—相关性过滤 相关性过滤:根据方差过部分滤完特征后(并不是说方差很大的数据就一定有用),就要考虑相关性了。使用相关性过滤后筛选出与标签相关且有意义的特征。卡方过滤:作用:专门针对离散型标签,即分类问题的相关性过滤。大致流程:计算每个非负特征和标签之间的卡方统计量,并且按照卡方统计量由高到低为特征排名,选出前k个分数最高的特征# feature_selection.chi2:计算每个非负特征和标签之间的卡方统计量,标签按照该统计量由高到低为特征排名# feature_selection.SelectKBest:
特征选择—方差过滤 Filter过滤法特征选择完全独立于机器学习算法,根据各种统计检验中的分数以及相关性的各项指标来选择特征。方差过滤VarianceThreshold:根据特征本身的方差来筛选特征。过滤特征本身的方差很小的特征,所以无论特征工程要做什么,应优先考虑消除方差为0的特征。# 重要参数threshold表示方差的阈值,方差舍弃小于threshold的特征,默认为0from sklearn.feature_selection import VarianceThresholdselector = Varia
python—绘制三维曲面以及三维散点图 三维曲面:import numpy as npfrom matplotlib import pyplot as pltfrom mpl_toolkits.mplot3d import Axes3D#定义坐标轴fig = plt.figure()ax1 = plt.axes(projection='3d')#ax = fig.add_subplot(111,projection='3d') #这种方法也可以画多个子图#定义三维数据xx = np.arange(-5,5,0.5)yy =
flask—后台图像存储 代码:# 部署图像处理视频处理def hostFile(f): # 删除原有文件,保证服务器内图片数量限制,从而保证内存足够 if (len(os.listdir(filedir)) > 4): os.remove(filedir + os.listdir(filedir)[0]) os.remove(filedir + os.listdir(filedir)[1]) filename = secure_filename(f.filename
python—删除文件 代码如下:import os, sysdirPath = "static/"print('移除前test目录下有文件:%s' %os.listdir(dirPath))#判断文件是否存在if(os.path.exists(dirPath+"20210331222622_66.jpg")): os.remove(dirPath+"20210331222622_66.jpg") print('移除后test 目录下有文件:%s' %os.listdir(dirPath))else:
opencv入门—图片,视频,摄像头简单人脸检测 图片人脸检测:import cv2 as cvimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号# 加载图片,灰度图方式读取img = cv.imread('img/img31.jpg')gray = cv.cvtColor(img,cv.COLOR
特征提取—文本,字典特征提取 字典特征提取:from sklearn.feature_extraction import DictVectorizeralist = [ {'city':"BJ",'temp':33}, {'city':"GZ",'temp':42}, {'city':"SH",'temp':40},]d = DictVectorizer(sparse=False)feature = d.fit_transform(alist)print(d.get_feature_names())
opencv笔记—均值滤波,高斯滤波,中值滤波简单理解及应用 图像噪声:椒盐噪声(脉冲噪声):随机出现的噪声,成因可能是有影像信号受到突如其来的强烈干扰而产生,类比数位转换器或位元传输错误等。例如失效的感应器导致像素值为最小值,饱和的感应器导致像素值为最大值。高斯噪声:噪声密度函数服从高斯分布的一类噪声。由于高斯噪声在空间和频域中数学上的易处理性,这种噪声(也称为正态噪声)模型经常被用于实践中。高斯随机变量z的概率密度函数由下式给出:均值滤波:采用均值滤波模板对图像噪声进行滤除。令Sxy 表示中心在(x, y)点,尺寸为m×n 的矩形子图像窗口的坐标组。由
最值问题—粒子群算法(PSO)python实现 粒子群算法:PSO比较有潜力的应用领域有多目标优化,分类,模式识别,决策等PSO存在的问题:应当与其它算法结合,解决PSO易陷于局部最优的问题粒子群“实体”:粒子群算法流程:粒子群更新:速度更新公式:位置更新公式:线性递减权值:wd=wstart-(wstart - wend)x (d/K)d是当前迭代的次数,K是迭代总次数,wstart一般取0.9,wend一般取0.4较大的w有较好的全局收敛能力,较小的w则有较强的局部收敛能力,因此,随着迭代次数的增加,惯性权重w应不断减少
递推—整数划分式的个数 题目描述:算法思想:可设n的最大零数不超过m的划分式个数为q(n,m)初始条件:q(n,0)=0,q(n,1)=1,q(1,n)=1 for(int i=1;i<=s;i++){ q[i][0]=0; q[i][1]=1; q[1][i]=1; }得到递推关系:n-m>m时q(n,m)=q(n,m-1)+q(n-m,m),n-m<=m时q(n,m)=q(n,m-1)+q(n-m,n-m) for(int i=2;i<=s;i++){ for(i