# CDA一级第五章

CDA一级 第五章 多维数据透视分析

商业智能报表(BI报表)先后使用ETL、DW、OLAP以及数据可视化4个不同阶段的软件技术。期中OLAP是最为关键的步骤,包含两项任务:多维数据模型(搭建多维数据模型)以及汇总计算规则(也为搭建数学模型),该章主要讲述多维数据模型的搭建过程。

多维数据模型

多维数据是用来映射多个不同业务角度的数据信息。由DW搭建桥梁,解决信息孤岛问题。
一、多维数据模型创建方法
建模过程是在多个不同数据表间进行连接的过程。
筛选器:连接线中间的箭头,分为双向筛选与单向筛选。
影响连接汇总计算结果的因素:筛选器方向对应关系汇总角色,筛选器方向和对应关系影响表连接逻辑,连接逻辑直接影响汇总结果。
单筛选器箭头指向的为度量字段,箭头出发侧为维度字段是筛选数据表,度量字段按公共字段求和汇总后反向匹维度字段,若度量总共字段有维度无,则在成表中公共字段为空,如下。
在这里插入图片描述
单向筛选器永远为从一表指向多表。
数据连接模型下,那个表提供度量字段那个表为主表,另一侧为附表。即提供度量字段表为主表。一对多时,使用单向筛选器,一表为维度表为附表,多表出度量字段为主表。

在Power BI中一对一默认为双向筛选。一对一日常生活中不常见,应尽量避免,物理意义上的一对一也只是暂时的,出现在主键对应非主键上。

汇总计算规则
类型一规则:先将维度字段下相同的维度项按照合并同类项方式合并一起,然后按计算规则将不同维度下对应的度量值进行汇总计算。
类型二规则:先将维度字段下不同维度项进行合并同类项处理,再找出每个维度下包含的不同的公共字段信息,对不同字段信息作为汇总度量字段的维度使用,按照规则求不同公共字段进行度量值。
在这里插入图片描述
两表连接规则总结
双向筛选器:多表筛选一表,按照类型二规则进行汇总计算
双向筛选器:一表筛选多表、按照类型一规则进行汇总计算。
单向筛选器:多表筛选一表,无法正确进行计算。
单向筛选器:一表筛选多表,按照类型一规则进行汇总计算。

Power BI 中表间筛选路径对汇总结果产生影响画为实线为有效路径,虚线为无效路径。两表间包含多条筛选路径为交叉连接。

维度表与事实表连接模型
星型模型:一事实表与多个维度表相连构成的连接模型,其实是对事实表丰富维度信息。
雪花模型:维度表与其他维度表相连再与事实表相连的连接模型,是对某些维度上信息的拓展。
星座模型:多个事实表与维度表连接后构成的连接模型,用共用的维度表将多个不同的事实表连接为整体。

二、5W2H思维模型
when 时间维度
where空间维度
who参与角色
why分析什么
how much度量
how to do怎么做
在这里插入图片描述
应用案例
销售管理模型
下图适用于关系型销售企业

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值