小小实践
1、split 函数—分割
-
作用:
split()
函数是用于切分数据,也就是将一串字符串切割成了一个数组, -
语法:
split(string str, string pat)
string str :待分割字符串
string pat:分割符 -
返回值: array
-
说明: 按照pat字符串分割str,会返回分割后的字符串数组
举例:
hive> select split ('wo shi xiao ming',' ');
OK
_c0
["wo","shi","xiao","ming"]
Time taken: 0.096 seconds, Fetched: 1 row(s)
hive> select split('abcdef', 'c');
OK
_c0
["ab","def"]
Time taken: 0.054 seconds, Fetched: 1 row(s)
2、explode函数—行转列
- 作用:
explode()
函数是用于打散行的函数,将一行的数据拆分成一列 - 语法:
explode(array/map类型)
参数必须为map或array
2.1 用于array类型的数据
select explode(array_col) as new_col from table_name
- table_name 表名
- array_col 为数组类型的字段
- new_col array_col被explode之后对应的列
hive> select explode(array("wo","shi","xiao","ming")) as word;
OK
word
wo
shi
xiao
ming
2.2 用于map类型的数据
- 由于map是kay-value结构的,所以它在转换的时候会转换成两列,一列是kay转换而成的,一列是value转换而成的。
select explode(map_col) as (may_key_col, may_value_col) from table_name
- table_name 表名
- map_col 为map类型的字段
- may_key_col, may_value_col 分别对应map_col被拆分之后的map映射里的key 和 value
hive> select explode(map("ABC","2016-05","EFG","2016-09")) as (m_name,m_time);
OK
m_name m_time
ABC 2016-05
EFG 2016-09
2.3 如何将其用入string类型的数据
- string形式的字段其实也可以转换,只需要用split函数把字段分割成一个数组的形式即可。
select explode(split(string_col,'分割符')) as new_col from table_name
- table_name 表名
- string_col 为string类型的字段
- new_col string_col被explode之后对应的列
hive> select explode(split("wo shi xiao ming",' ')) as word;
OK
word
wo
shi
xiao
ming
2.4 explode函数的局限性
- 不能关联原有的表中的其他字段, 例如:
select other_col, explode(array_col) as new_col from table_name
- 不能与group by、cluster by、distribute by、sort by联用
- 不能进行UDTF嵌套,
- 参数只能是两种类型
- 一个select后面只能获得一个explode产生的视图,如果要显示多个列,则需要将多个视图合并。lateral view就是做这样的事的。
3、lateral view
- Lateral View 是为了优化 UDTF
- Lateral View用于和UDTF函数(explode、split)结合来使用。
- 首先通过UDTF函数拆分成多行,再将多行结果组合成一个支持别名的虚拟表。虚拟表相当于再和主表关联, 从而达到添加“UDTF生成的字段“以外字段的目的, 即主表里的字段或者主表运算后的字段。
- 主要解决在select使用UDTF做查询过程中,查询只能包含单个UDTF,不能包含其他字段、以及多个UDTF的问题
语法
lateral view UDTF(expression) table_view as new_column;
- UDTF(expression):复合逻辑规则的UDTF函数,最常用的explode
- table_view : 对应的虚拟表的表名
- new_col: 虚拟表里存放的有效字段
a.lateral view explode
select source_column,new_column
from source_table
lateral view explode(source_column) new_table as new_column;
- source_table:表示需要行转列的表
- source_column:表示 原表中的一字段
- new_table:表示 lateral view explode 生成的新表名
- new_column:表示 source_column 行转列后生成的新列名
4、小实践
4.1 单词统计
1、建立文章表
create table article(
sentence string
)
row format delimited fields terminated by '';
2、加载本地数据到表article中
load data local inpath '/mr/mr_wc/The_Man_of_Property.txt' into table article;
- 查看前五条数据
select * from article limit 5;
3、基于上述表,进行单词统计
- 首先将句子字符串形式切割,形成数组形式
select
split(sentence,' ') word
from article
limit 10;
- 行转列
select
explode(split(sentence,' ')) word
from article
limit 10;
- 分组,统计
select
word, count(*) AS cnt
from
(select
explode(split(sentence,' ')) word
from article
) t
group by word
limit 10;
- 可以看出,已经统计出来了,但瑕疵的是有一些特殊符号,这就需要正则匹配来处理了,下次再梳理
4.2 学生成绩相关操作
1、建立学生成绩表
create table student_score(
stu_id string,
stu_name string,
courses string,
scores string
)
row format delimited fields terminated by ',';
2、添加数据
3、查询每个学生所有科目的成绩并且以列的形式呈现