pytorct的.pt怎么转mindspore的.ckpt

问题描述:

想用mindspore来做一下目标检测,但是怎么转模型呢,求助有什么好的方法和教程?

就是.pt转成ckpt后,就是去测试模型推理,mindspore我看官网教程必须要有yaml文件,我这个.pt转后yaml文件该怎么搞?

解决方法:

mindspore的ckpt就是个字典,key是参数名,value就是保存了对应权重数据的一个tensor,转换过程就是把pt的key和value读取出来,然后把pt的value数据先转成numpy,再转成mindspore的tensor,和key对应放入到一个dict里面去,然后用mindspore的save_checkpoint保存成ckpt:

mindspore.save_checkpoint(dict_param, 'ms.ckpt')

可以参考下mindnlp里面的相关方法:

https://github.com/mindspore-lab/mindnlp/blob/fd3d7456a780d7a6530fa101435305423f3a68c3/mindnlp/core/serialization.py#L1242

ckpt就是个单独的文件,你有模型的话,就直接加载到模型里就可以了,模型的变量名和ckpt里面的key名称对得上,权重就会一一加载,你说的yaml文件,可能某些模型创建的时候是根据配置文件来创建的,所以用到了yaml,但ckpt本身和yaml没什么关系,就是个独立的存储权重键值对的文件。

### 回答1: ckpt.t7和yolov5.pt 都是深度学习模型的文件,但有一些区别。 首先,它们的文件格式不同。ckpt.t7文件是一种以torch.nn.Module的形式保存的模型文件,是PyTorch框架中常用的保存模型的文件格式。而yolov5.pt文件则是一种特定于Yolov5模型的保存文件格式,该模型基于PyTorch实现。 其次,它们保存的模型不同。ckpt.t7文件是一种通用的模型保存文件,可以保存任何基于torch.nn.Module的模型,如ResNet、GoogLeNet等。而yolov5.pt文件是特定于Yolov5模型的保存文件,它保存的是Yolov5模型的权重参数。 另外,它们的使用方式也有所不同。ckpt.t7文件保存的模型需要先加载到一个模型对象中,然后才能对其进行推理或训练等操作。而yolov5.pt文件一般直接加载到Yolov5模型中,并可用于物体检测任务。 此外,由于差异的存在,如果想在不同的深度学习框架中使用这两个文件,可能需要进行一些换或调整。 总结来说,ckpt.t7和yolov5.pt是不同的模型文件格式,保存的模型类型也有差异。它们的使用方式和应用场景也略有不同。 ### 回答2: ckpt.t7和yolov5.pt是不同深度学习模型文件的扩展名。它们分别对应不同的深度学习框架和网络结构。 ckpt.t7是PyTorch深度学习框架中保存模型权重的默认格式。.t7文件将模型的权重以二进制格式存储,包括模型参数、优化器状态等信息。这种格式适用于将模型保存并在PyTorch中加载和恢复。 而yolov5.ptYOLOv5目标检测模型的保存格式。YOLOv5是一种基于PyTorch实现的目标检测算法,.pt文件保存了YOLOv5模型的权重和结构信息。使用.yolov5.pt可以直接加载YOLOv5模型并进行目标检测任务。 总结来说,ckpt.t7是PyTorch框架中通用的模型权重保存格式,可以用于不同的深度学习模型。而yolov5.pt是特定于YOLOv5模型的保存格式,用于保存YOLOv5目标检测模型的权重和结构信息。 ### 回答3: ckpt.t7和yolov5.pt是两种不同的模型文件格式。 ckpt.t7是Torch框架中保存模型的默认文件格式。它是基于Lua编程语言的Torch模型的保存文件,包含了模型架构以及训练参数和权重等信息。通常,ckpt.t7文件只能在Torch框架中加载和使用。 而yolov5.pt是一种特定于YoloV5模型的模型文件格式。YoloV5是一种流行的目标检测算法,用于实时目标检测任务。yolov5.pt文件是使用PyTorch框架训练的YoloV5模型的保存文件。与ckpt.t7类似,yolov5.pt文件包含了模型架构和训练参数,但是它使用PyTorch框架的数据结构和保存方法。因此,yolov5.pt文件只能在PyTorch框架中加载和使用。 综上所述,ckpt.t7和yolov5.pt是不同的模型文件格式,分别适用于Torch和PyTorch框架。用户需要根据自己的框架选择相应的模型文件加载方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值