2021年度训练联盟热身训练赛第三场——C,G,I

感谢队友带飞,赛后1min过G,经典操作

C——Gerrymandering(枚举)

原题链接

题意:

求每个地区A和B的无效票,以及所有地区的 efficiency gap 之和。

代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9')
    {
        if(ch == '-')f = -1;
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9')
    {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a, ll b, ll p)
{
    ll res = 1;
    while(b)
    {
        if(b & 1)res = res * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return res;
}
const int inf = 0x3f3f3f3f;
#define PI acos(-1)
const double eps = 1e-8;
const int maxn =1e5+7;
struct node{
	int a,b;
	int wa,wb;
}s[maxn];
int main(){
	int n=read,m=read;
	for(int i=1;i<=n;i++){
		int op=read,u=read,v=read;
		s[op].a+=u,s[op].b+=v;
	}
	for(int i=1;i<=m;i++){
		if(s[i].a<s[i].b){
			cout<<"B ";
			cout<<s[i].a<<" ";
			cout<<s[i].b-(s[i].a+s[i].b)/2-1<<endl;
			s[i].wa=s[i].a;
			s[i].wb=s[i].b-(s[i].a+s[i].b)/2-1;
		}
		else{
			cout<<"A ";
			cout<<s[i].a-(s[i].a+s[i].b)/2-1<<" ";
			cout<<s[i].b<<endl;
			s[i].wa=s[i].a-(s[i].a+s[i].b)/2-1;
			s[i].wb=s[i].b;
		} 
	}
	int wsa=0,wsb=0,sum=0;
	for(int i=1;i<=m;i++){
		wsa=wsa+s[i].wa;
		wsb=wsb+s[i].wb;
		sum=sum+s[i].a+s[i].b;
	}
	printf("%.10lf\n",abs(wsa-wsb)*1.0/sum);
	return 0;
}

G ——Research Productivity Index(概率DP+数学期望)

思路:

用概率dp求出概率,再结合数学期望的定义。
d p [ i ] [ j ] dp[i][j] dp[i][j]表示选择前 i i i个文章时成功了 j j j篇的概率:
转移考虑第 i i i篇文章是否成功,如果成功的话说明前 i − 1 i-1 i1篇文章只成功了 j − 1 j-1 j1篇,不成功的话说明前 i − 1 i-1 i1篇文章成功了 j j j篇。
注意初始化:前 0 0 0篇成功了 0 0 0篇的概率是1.
期望的话就是 ∑ p i ∗ x i \sum_{}^{}{p_{i}*x_{i}} pixi

代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9')
    {
        if(ch == '-')f = -1;
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9')
    {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a, ll b, ll p)
{
    ll res = 1;
    while(b)
    {
        if(b & 1)res = res * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return res;
}
const int inf = 0x3f3f3f3f;
#define PI acos(-1)
const double eps = 1e-8;
const int maxn =110;
double dp[110][110],a[110];
bool cmp(double a,double b){
	return a>b;
}
int main(){
	int n=read;
	rep(i,1,n){
		int x=read;
		a[i]=x*0.01;
	}
	sort(a+1,a+1+n,cmp);
	double res=0;
	dp[0][0]=1;
	for(int i=1;i<=n;i++){
		dp[i][0]=dp[i-1][0]*(1-a[i]);
		for(int j=1;j<=i;j++)
			dp[i][j]=dp[i-1][j-1]*a[i]+dp[i-1][j]*(1-a[i]);
		double tmp=0;
		for(int j=1;j<=i;j++)
			tmp=tmp+dp[i][j]*pow(j,1.0*j/i);
		res=max(res,tmp);
	}
	printf("%.9lf\n",res);
	return 0;
}

I——Slow Leak(floyd)

思路:

n只有500,考虑floyd。
先对全图跑一遍floyd得出任意两点的最短距离。
再将起点终点和加油站跑一遍floyd,这样最后的 g [ 1 ] [ n ] g[1][n] g[1][n]就是答案。
注意跑第二遍floyd之前对数组 g g g再次进行初始化,若 g [ i ] [ j ] > d g[i][j]>d g[i][j]>d g [ i ] [ j ] = i n f g[i][j]=inf g[i][j]=inf.
这样说明两个加油站之间的距离大于 d d d,是无法到达的。

代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9')
    {
        if(ch == '-')f = -1;
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9')
    {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a, ll b, ll p)
{
    ll res = 1;
    while(b)
    {
        if(b & 1)res = res * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return res;
}
const ll inf = 1e17;
#define PI acos(-1)
const double eps = 1e-8;
const int maxn =110;
ll g[510][510];
vector<int>v[510];
bool vis[510];
int cnt=0,a[510];
int main(){
	int n=read,m=read,t=read,d=read;
	rep(i,1,t){
		int x=read;
		vis[x]=1;
		a[++cnt]=x;
	}
	memset(g,0x3f,sizeof g);
	for(int i=1;i<=n;i++) g[i][i]=0;
	for(int i=1;i<=m;i++){
		ll u=read,v=read,w=read;
		g[u][v]=g[v][u]=min(g[u][v],w);
	}
	for(int k=1;k<=n;k++)
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
				g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
	a[++cnt]=1;a[++cnt]=n;
	for(int i=1;i<=cnt;i++)
		for(int j=1;j<=cnt;j++)
			if(g[a[i]][a[j]]>d) g[a[i]][a[j]]=inf;
	for(int k=1;k<=cnt;k++)
		for(int i=1;i<=cnt;i++)
			for(int j=1;j<=cnt;j++){
				int kk=a[k],ii=a[i],jj=a[j];
				g[ii][jj]=min(g[ii][jj],g[ii][kk]+g[kk][jj]);
				///if(g[ii][jj]>d) g[ii][jj]=inf;
			}

	if(g[1][n]>=inf) puts("stuck");
	else cout<<g[1][n]<<endl;
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值