luogu P3834 【模板】可持久化线段树 2(主席树)

link

///#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9')
    {
        if(ch == '-')f = -1;
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9')
    {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a, ll b, ll p)
{
    ll res = 1;
    while(b)
    {
        if(b & 1)res = res * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return res;
}
const int maxn=2e5+10;
int n,m,a[maxn];
vector<int>nums;
struct node{
    int l,r,cnt;//第i个线段树维护的是[1,i]在[l,r]范围的个数
}tr[maxn*4+maxn*17];
int root[maxn],idx;
int Find(int x){
    return lower_bound(nums.begin(),nums.end(),x)-nums.begin();
}
int build(int l,int r){
    int p=++idx;//建立线段树
    if(l==r) return p;
    int mid=(l+r)/2;//递归建立左右子树
    tr[p].l=build(l,mid);
    tr[p].r=build(mid+1,r);
    return p;
}
int Insert(int p,int l,int r,int x){
//p是历史版本,[l,r]是待查询区间 x是待插入的数
    int q=++idx;
    tr[q]=tr[p];//先复制过来
    if(l==r){
        tr[q].cnt++;
        return q;
    }
    int mid=(l+r)/2;
    if(x<=mid) tr[q].l=Insert(tr[p].l,l,mid,x);
    else tr[q].r=Insert(tr[p].r,mid+1,r,x);
    tr[q].cnt=tr[tr[q].l].cnt+tr[tr[q].r].cnt;
    return q;
}
int qask(int q,int p,int l,int r,int k){
    if(l==r) return r;
    int cnt=tr[tr[q].l].cnt-tr[tr[p].l].cnt;
    int mid=(l+r)/2;
    if(k<=cnt) return qask(tr[q].l,tr[p].l,l,mid,k);
    else return qask(tr[q].r,tr[p].r,mid+1,r,k-cnt);
}
int main() {
    n=read,m=read;
    rep(i,1,n){
        a[i]=read;
        nums.push_back(a[i]);///离散化
    }
    sort(nums.begin(),nums.end());//排序
    nums.erase(unique(nums.begin(),nums.end()),nums.end());//去重
    root[0]=build(0,nums.size()-1);//建树
    rep(i,1,n)//插入元素
        root[i]=Insert(root[i-1],0,nums.size()-1,Find(a[i]));
    while(m--){
        int l=read,r=read,k=read;
        int t=qask(root[r],root[l-1],0,nums.size()-1,k);
        printf("%d\n",nums[t]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值