linkkkkk
题意:
给出一个
n
∗
m
n*m
n∗m的矩形,里面有
k
k
k个点,从
(
0
,
0
)
(0,0)
(0,0)走到
(
n
,
m
)
(n,m)
(n,m),使得过程中和这些点的最小距离最大,输出最大距离。
思路:
看到最小距离最大,首先想到二分。
比较思维的一个转化就是将运动轨迹看成是一个半径为
m
i
d
mid
mid的圆,那么如果两个点之间的距离小于
2
∗
m
i
d
2*mid
2∗mid,这个圆就无法通过。
由于点的数量只有
1000
1000
1000,所以直接暴力枚举两个点是否相交即可。注意也要判断是否超过边界。可以用并查集维护连通性。最后如果说上下、左右、上右、下左有联通的话,该值不可行。
代码:
// Problem: C. Safe Distance
// Contest: Codeforces - 2020-2021 ICPC Southwestern European Regional Contest (SWERC 2020)
// URL: https://codeforces.com/gym/103081/problem/C
// Memory Limit: 256 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<cassert>
#include<bitset>
#include<list>
#include<unordered_map>
//#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read(){ll x = 0, f = 1;char ch = getchar();while(ch < '0' || ch > '9'){if(ch == '-')f = -1;ch = getchar();}while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}return x * f;}
inline void write(ll x){if (x < 0) x = ~x + 1, putchar('-');if (x > 9) write(x / 10);putchar(x % 10 + '0');}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a, ll b,ll mod){ll res = 1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;}
const int maxn=2e5+100,inf=0x3f3f3f3f;
const double eps=1e-6;
int n,m,k;
int nx[]={1,2,1,3};
int ny[]={3,4,2,4};
struct node{
double x,y;
}pos[1100];
int root[maxn];
int Find(int x){
if(x!=root[x]) root[x]=Find(root[x]);
return root[x];
}
bool flag;
bool check(double r){
rep(i,1,k+4) root[i]=i;
for(int i=1;i<=k;i++){
if(pos[i].y+r>m){
int u=Find(i),v=Find(k+1);
if(u!=v) root[u]=v;
}
if(pos[i].y<r){
int u=Find(i),v=Find(k+3);
if(u!=v) root[u]=v;
}
if(pos[i].x<r){
int u=Find(i),v=Find(k+4);
if(u!=v) root[u]=v;
}
if(pos[i].x+r>n){
int u=Find(i),v=Find(k+2);
if(u!=v) root[u]=v;
}
for(int j=1;j<i;j++){
double tmp=(pos[i].x-pos[j].x)*(pos[i].x-pos[j].x)+(pos[i].y-pos[j].y)*(pos[i].y-pos[j].y);
if(tmp<4*r*r){
int u=Find(i),v=Find(j);
if(u!=v) root[u]=v;
}
}
}
if(Find(k+1)==Find(k+3)||Find(k+2)==Find(k+4)||Find(k+1)==Find(k+2)||Find(k+3)==Find(k+4)) return 0;
return 1;
}
int main(){
n=read,m=read,k=read;
rep(i,1,k) cin>>pos[i].x>>pos[i].y;
double l=0,r=max(n,m);
while(r-l>=eps){
double mid=(l+r)/2.0;
if(check(mid)) l=mid;
else r=mid;
//cout<<l<<" "<<r<<endl;
}
printf("%.5f\n",l);
return 0;
}