题意
给出长度为 n ( n < = 40 ) n(n<=40) n(n<=40)由数字构成的字符串和 a , b a,b a,b,请将该字符串分为两部分 A , B A,B A,B,使得 A A A变为数字后可以整除 a a a, B B B可以整除 b b b,并且 A , B A,B A,B至少有一位。最小化 A , B A,B A,B的位数之差,输出方案。
思路
看到
n
n
n的范围后想到了搜索,会有很多重复的状态所以做一个标记,如果已经遇到过这个状态就不再继续向下搜了。
搜索的时候维护当前
A
m
o
d
a
A\mod a
Amoda的值
m
a
ma
ma,
B
m
o
d
b
B \mod b
Bmodb的值
m
b
mb
mb,
A
A
A的位数
c
n
t
a
cnta
cnta和当前枚举到第
u
u
u位。终止条件为
u
=
=
n
u==n
u==n,看此时能否满足整除条件并且
1
<
=
c
n
t
a
<
n
1<=cnta<n
1<=cnta<n。
代码
#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<sstream>
using namespace std;
typedef long long ll;
int n, a, b, ans, col[55], dp[55][55][55][55];
string s;
int st[55];
void dfs(int u, int ma, int mb, int cnta) {
if (u == n) {
if (!ma && !mb && cnta >= 1 && cnta < n) {
if (abs(n - cnta - cnta) < ans) {
ans = abs(n - cnta - cnta);
for (int i = 0; i < n; i++) col[i] = st[i];
}
}
return;
}
if (dp[u][ma][mb][cnta]) return;
dp[u][ma][mb][cnta] = 1;
st[u] = 0;
dfs(u + 1, (ma*10 + s[u] - '0') % a, mb, cnta + 1);
st[u] = 1;
dfs(u + 1, ma, (mb*10 + s[u] - '0') % b, cnta);
}
int main() {
int _; cin >> _;
while (_--) {
cin >> n >> a >> b;
cin >> s;
ans = 1e9;
memset(dp, 0, sizeof dp);
dfs(0, 0, 0, 0);
if (ans == 1e9) puts("-1");
else {
for (int i = 0; i < s.size(); i++)
if (col[i]) cout << "B";
else cout << "R";
puts("");
}
}
return 0;
}
/*
4
5 3 13
02165
4 2 1
1357
8 1 1
12345678
2 7 9
90
*/