为拓宽选手们的技术视野,腾讯广告算法大赛官方邀请 NVIDIA 及腾讯的技术大咖,倾力打造了“技”高一筹系列专题直播。在6月10日的直播中,NVIDIA 亚太 AI 开发者技术解决方案经理王泽寰,对 NVIDIA 最新推荐系统解决方案 Merlin 进行全面解析,并对选手们的疑问进行了详细解答。这份来自技术大咖的“干货”,请查收!
直播 FAQ
Q1:Merlin 是否支持 10TB 以上的模型训练?
A:Merlin HugeCTR 专门为大模型训练设计了模型并行的Embedding层和Embedding Training Cache (Model Oversubscription)机制。通过模型并行 Embedding 层,我们将Embedding拆分到多个 GPU、多个节点从而充分利用多GPU的显存用来存储大模型。而 Embedding Training Cache 通过将完整的 Embedding 存储在外存中,并将每个子训练集(比如一个月的数据)中用到的 Feature 缓存在GPU中,可以充分利用训练数据的局部性减少对 GPU 显存的消费从而通过一台或几台机器完成 10TB 模型的训练。
Q2:训练数据读取太慢,怎么办?
A:Merlin NvTabular 重新实现了 TensorF