题目:已知一棵二叉树按顺序存储结构进行存储,设计一个算法,求编号为i和j的两个结点的最近的公共祖先结点的值。
分析:用完全二叉树好分析,如图所示若i=4,j=5,由于它们的双亲编号为2,可得出双亲编号为i/2。那应该取多少次i/2才能找到?结论是:不断将较大的结点取一半,这样不断循环,总会交于同一结点,这个结点就是最近公共祖先结点。
以图为例,i=4,j=5,j>i,所以j/2=2,j=2,到达②;
此时i=4,j=2,i>j,i/2=2,到达②;
此时i=j=2,所以②为最近公共祖先结点。
算法思想:不断的将较大的取一半,比较i,j的大小,直到i==j,就找到了公共祖先结点。
代码:
ElemType common_ancestor(SqTree T,int i,int j){
// SqTree为顺序存储的树T
if(T[i]!=Null && T[j]!=Null){
while(i!=j){ // 核💕,不断循环,总会交于同一结点
if(i>j){
i=i/2;
else
j=j/2;
}
return T[i];
}
}
}