题目描述
很久以前,T王国空前繁荣。
为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。
同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J是T国重要大臣,他巡查于各大城市之间,体察民情。
所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。
他有一个钱袋,用于存放往来城市间的路费。
聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
输入格式
输入的第一行包含一个整数 n,表示包括首都在内的T王国的城市数。
城市从 1 开始依次编号,1 号城市为首都。
接下来 n−1 行,描述T国的高速路(T国的高速路一定是 n−1 条)。
每行三个整数 Pi,Qi,Di,表示城市 Pi 和城市 Qi 之间有一条双向高速路,长度为 Di 千米。
输出格式
输出一个整数,表示大臣J最多花费的路费是多少。
数据范围
1≤n≤105,
1≤Pi,Qi≤n,
1≤Di≤1000
输入样例:
5
1 2 2
1 3 1
2 4 5
2 5 4
输出样例:
135
分析
题目让求一个最多的花费, 而花费至于走过的距离有关, 所以我们要维护出一个符合题目走法的最长距离
题目中的走法是: 从某一个城市出发,中间不休息,到达另一个城市
题目中又提到: 任何一个大城市都能从首都直接或者通过其他大城市间接到达。且如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的,
所以题目中的图构成一棵树, 且走法不能重复经过一个点
所以我们要维护的最长距离, 就是这颗树的直径
如何求树的直径
? (下图来自算法竞赛进阶指南)
至于花费, 不难推导出花费 = 直径 * 10 + 直径*(直径 + 1)/2
样例说明
实现
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1e5 + 9;
struct node
{
int v, w;
};
vector<node> e[N];
int n;
int maxL; // 维护搜索出的最长路径
int s; // 维护第一次搜索出的最长路径的端点
void dfs(int now, int last, int dis) // now 当前到达的点, last 上一次到达的点, dis 当前搜索维护的距离
{
for(int i=0; i<e[now].size(); i++)
{
int v = e[now][i].v;
if(v == last) continue; // 防止往回走
int w = e[now][i].w;
if(dis + w > maxL)
{
maxL = dis + w;
s = v;
}
dfs(v,now,dis+w);
}
}
int main()
{
cin >> n;
// 邻接表存图
for(int i=1; i<=n; i++)
{
int a, b, c;
cin >> a >> b >> c;
e[a].push_back(node{b,c});
e[b].push_back(node{a,c});
}
// 求树的直径
dfs(1,-1,0); // 第一次DFS: 从任意节点DFS, 维护出到该节点的最远距离maxL, 及点s
dfs(s,-1,0); // 第二次DFS: 从s点DFS, 维护出树的直径 maxL
long long cost = (long long)maxL * 10 + (long long)maxL*(maxL + 1) / 2; // 最后的花费 爆 int
cout << cost << endl;
return 0;
}