AcWing 1207. 大臣的旅费(DFS求树的直径)

该博客介绍了如何通过深度优先搜索(DFS)算法解决一个图论问题,即在一个城市网络中找到从首都出发不重复经过大城市到达其他城市的最远距离,即树的直径,并根据距离计算大臣J的最大路费。题目给出的数据范围和约束条件表明,这个问题可以通过构建一棵树来解决,然后进行两次DFS找到树的直径。最终,博主提供了C++代码实现,通过维护最长路径和起点,计算出最大花费,输出结果为135。
摘要由CSDN通过智能技术生成

题目描述

原题链接

很久以前,T王国空前繁荣。

为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。

为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。

同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。

J是T国重要大臣,他巡查于各大城市之间,体察民情。

所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。

他有一个钱袋,用于存放往来城市间的路费。

聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。

J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?

输入格式

输入的第一行包含一个整数 n,表示包括首都在内的T王国的城市数。

城市从 1 开始依次编号,1 号城市为首都。

接下来 n−1 行,描述T国的高速路(T国的高速路一定是 n−1 条)。

每行三个整数 Pi,Qi,Di,表示城市 Pi 和城市 Qi 之间有一条双向高速路,长度为 Di 千米。

输出格式

输出一个整数,表示大臣J最多花费的路费是多少。

数据范围

1≤n≤105,
1≤Pi,Qi≤n,
1≤Di≤1000

输入样例:
5 
1  2  2 
1  3  1 
2  4  5 
2  5  4 
输出样例:
135

分析

题目让求一个最多的花费, 而花费至于走过的距离有关, 所以我们要维护出一个符合题目走法的最长距离
题目中的走法是: 从某一个城市出发,中间不休息,到达另一个城市
题目中又提到: 任何一个大城市都能从首都直接或者通过其他大城市间接到达。且如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的,
所以题目中的图构成一棵树, 且走法不能重复经过一个点
所以我们要维护的最长距离, 就是这颗树的直径


如何求树的直径? (下图来自算法竞赛进阶指南)
在这里插入图片描述
至于花费, 不难推导出 花费 = 直径 * 10 + 直径*(直径 + 1)/2

样例说明

image-20210328133202372

实现

#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1e5 + 9;
struct node
{
    int v, w;
};
vector<node> e[N];
int n;
int maxL; // 维护搜索出的最长路径
int s; // 维护第一次搜索出的最长路径的端点
void dfs(int now, int last, int dis) // now 当前到达的点, last 上一次到达的点, dis 当前搜索维护的距离
{
    for(int i=0; i<e[now].size(); i++)
    {
        int v = e[now][i].v;
        if(v == last) continue; // 防止往回走
        int w = e[now][i].w;
        if(dis + w > maxL)
        {
            maxL = dis + w;
            s = v;
        }
        dfs(v,now,dis+w);
    }
}
int main()
{
    cin >> n;
    // 邻接表存图
    for(int i=1; i<=n; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        e[a].push_back(node{b,c});
        e[b].push_back(node{a,c});
    }
    // 求树的直径
    dfs(1,-1,0); // 第一次DFS: 从任意节点DFS, 维护出到该节点的最远距离maxL, 及点s
    dfs(s,-1,0); // 第二次DFS: 从s点DFS, 维护出树的直径 maxL

    long long cost = (long long)maxL * 10 + (long long)maxL*(maxL + 1) / 2; // 最后的花费 爆 int
    cout << cost << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值