- 博客(13)
- 收藏
- 关注
原创 数据清洗 处理有字段缺失的数据
将有字段缺失的数据删除掉分析将清洗后的数据导入数据库表中筛选出新增确诊人数最多的前三天的数据map代码效果还有一种思路 把缺失的数据注释map代码package test7;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Ma
2020-09-27 15:15:09 828 2
原创 数据清洗5
依然是mapperpackage test5;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Mapper;import org.codehaus.jettiso
2020-09-23 20:56:25 152
原创 数据清洗练习4
依然是mapper代码import net.sf.json.JSONObject;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class mappp e
2020-09-20 16:47:15 338
原创 清洗实操练习3
mapper代码package test3;import net.sf.json.JSONObject;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Mapper;import org.codehaus.jettison.json.JSONE
2020-09-20 16:45:14 123
原创 利用Hadoop MapReduce对文件进行处理
需求利用Hadoop MapReduce对文件进行处理源文件:(局部){"date":" 2020.9.3","temp":" 17-28","city":"北京","weather":" 多云","wind":" 无持续风向 3-4级"}处理后的结果:(局部)北京, 2020.9.3, 多云, 17-28, 无持续风向 3-4级提示:把json格式转换为简单字符串格式:依赖:<dependency> <groupId>common
2020-09-20 16:41:14 305
原创 数据清洗实操
大数据清洗实操例子“北京, 2020.9.3, 多云, 17-28, 无持续风向 3-4级”mapperimport org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Mapper
2020-09-15 20:38:36 231
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人