前缀、中缀、后缀表达式
前缀表达式(波兰表达式)
- 前缀表达式又称波兰式,前缀表达式的运算符位于操作数之前
- 举例说明: (3+4)×5-6 对应的前缀表达式就是 - × + 3 4 5 6
中缀表达式
- 中缀表达式就是常见的运算表达式,如(3+4)×5-6
- 中缀表达式的求值是我们人最熟悉的,但是对计算机来说却不好操作,因此,在计算结果时,往往会将中缀表达式转成其它表达式来操作(一般转成后缀表达式.)
后缀表达式
- 后缀表达式又称逆波兰表达式,与前缀表达式相似,只是运算符位于操作数之后
- 举例说明: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 –
后缀表达式的计算机求值
从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 和 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果
例如: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 - , 针对后缀表达式求值步骤如下:
- 从左至右扫描,将3和4压入堆栈;
- 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
- 将5入栈;
- 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
- 将6入栈;
- 最后是-运算符,计算出35-6的值,即29,由此得出最终结果
代码实现(后缀表达式的计算)
/***
* @description: 将一个逆波兰表达式的数据和运算符依次放入ArrayList中
* @param: suffixExpression
* @return: java.util.List<java.lang.String>
* @author ZhangJiaHao
* @date: 2021/12/3 16:49
*/
public static List<String> getListString(String suffixExpression){
// 将suffixExpression进行分割
String[] split = suffixExpression.split(" ");
List<String> list = new ArrayList<>();
for (String s : split) {
list.add(s);
}
return list;
}
/***
* @description: 将传进来的list进行运算,后缀表达式的运算
* @param: ls
* @return: int
* @author ZhangJiaHao
* @date: 2021/12/3 16:54
*/
public static int calculate(List<String> ls){
// 创建栈
Stack stack = new Stack();
int num1;
int num2;
int result;
for (String item : ls) {
if (item.matches("\\d+")){ // 这里使用正则表达式进行判断是不是为数字
stack.push(item);
}else {
num1 = Integer.parseInt((String) stack.pop());
num2 = Integer.parseInt((String) stack.pop());
result = 0;
if (item.equals("+")){
result = num1 + num2;
}else if (item.equals("-")){
result = num2 - num1;
}else if (item.equals("*")){
result = num1 * num2;
}else if (item.equals("/")){
result = num2 / num1;
}else {
throw new RuntimeException("此运算符号无法识别");
}
stack.push(result + "");
}
}
return Integer.parseInt((String) stack.pop());
}
那么如何将中缀表达式转为后缀表达式呢?
- 初始化两个栈:运算符栈s1和储存中间结果的栈s2;
- 从左至右扫描中缀表达式;
- 遇到操作数时,将其压s2;
- 遇到运算符时,比较其与s1栈顶运算符的优先级:
4.1 如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
4.2 否则,若优先级比栈顶运算符的高,也将运算符压入s1;
4.3 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4-1)与s1中新的栈顶运算符相比较; - 遇到括号时:
5.1 如果是左括号“(”,则直接压入s1
5.2 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃 - 重复步骤2至5,直到表达式的最右边
- 将s1中剩余的运算符依次弹出并压入s2
- 依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式
代码实现(中缀表达式转后缀表达式)
/***
* @description: 返回运算符高低的类
* @param: oper
* @return: int
* @author ZhangJiaHao
* @date: 2021/12/4 9:28
*/
public static int priority(String oper){
if (oper == "*" || oper == "/"){
return 1;
}else if (oper == "+" || oper == "-"){
return 0;
}else {
return -1; // 认为这是有问题的符号
}
}
/***
* @description: 将中缀表达式转为对应的List
* @param: s
* @return: java.util.List<java.lang.String>
* @author ZhangJiaHao
* @date: 2021/12/4 8:54
*/
public static List<String> toInfixExpressionList(String s){
List<String> list = new ArrayList<>(); // 定义一个list,存放中缀表达式对应的内容
int i = 0; // 这是一个指针,用于遍历中缀表达式的字符串
String str; // 这是对多位数进行拼接的string
char c; // 每遍历一个字符,就存放到c中
while (i < s.length()){
// 如果是非数字,则直接添加到ls中
if (((c = s.charAt(i)) < 48) || ((c = s.charAt(i)) > 57)){
list.add(c + "");
i++;
}else {
// 是数字,则判断数字是不是多位数
str = "";
while (i < s.length() && ((c = s.charAt(i)) >= 48 && (c = s.charAt(i)) <= 57 )){
str = str + c;
i++;
}
list.add(str);
}
}
return list;
}
/***
* @description: 中缀表达式转后缀表达式
* @param: list
* @return: java.util.List<java.lang.String>
* @author ZhangJiaHao
* @date: 2021/12/4 9:55
*/
public static List<String> parseSuffixExpressionList(List<String> list){
// 初始化两个栈
Stack<String> s1 = new Stack<>(); // 符号栈
// Stack<String> s2 = new Stack<>(); // 存储中间结果的栈,因为s2在转换的过程中,没有pop的操作,而且到最后还需要逆序的输出,所以我们可以使用ArrayList来代替这个栈
List<String> s2 = new ArrayList<>();
// 遍历list
for (String item : list) {
// 如果是一个数,则直接入s2
if (item.matches("\\d+")){
s2.add(item);
}else if (item.equals("(")){ // 如果是左括号,则直接入栈
s1.push(item);
}else if (item.equals(")")){ // 如果是右括号,则弹出符号栈的值,入s2,直到遇见左括号,然后清楚这对括号
while (!s1.peek().equals("(")){
s2.add(s1.pop());
}
s1.pop();
}else { // 是运算符
if (s1.size() == 0 || (s1.peek().equals("("))){ //如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈
s1.push(item);
}else if (s1.size() != 0 && (priority(item) > priority(s1.peek())) ){ //若优先级比栈顶运算符的高,也将运算符压入s1
s1.push(item);
}else {
// 当item的优先级<=栈顶的运算符的优先级,则弹出栈顶符号并入s2,然后继续比较
while (s1.size() != 0 && (priority(item) <= priority(s1.peek()))) {
s2.add(s1.pop());
}
s1.push(item);
}
}
}
// 将s1的运算符加入到s2中
while (s1.size() != 0){
s2.add(s1.pop());
}
return s2;
}
此代码不能满足小数点等操作