1. 堆排序基本介绍
- 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
- 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
- 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆
- 大顶堆举例说明
我们对堆中的结点按层进行编号,映射到数组中就是下面这个样子:
大顶堆特点:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2] // i 对应第几个节点,i从0开始编号
小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2] // i 对应第几个节点,i从0开始编号
一般升序采用大顶堆,降序采用小顶堆
2. 堆排序基本思想
- 将待排序序列构造成一个大顶堆 (这里我们将树改为数组的形式进行存放)
- 此时,整个序列的最大值就是堆顶的根节点。
- 将其与末尾元素进行交换,此时末尾就为最大值。
- 然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
3. 例子
要求:给你一个数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序。
3.1
假设给定无序序列结构如下
3.2
此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。
3.3
找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
3.4
这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6
3.5
此时,我们就将一个无序序列构造成了一个大顶堆。将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
3.6
将堆顶元素9和末尾元素4进行交换
3.7
重新调整结构,使其继续满足堆定义
3.8
再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.
3.9
后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
4. 总结
- 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
- 将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
- 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
5. 代码实现
public class HeapSortGuiGu {
public static void main(String[] args) {
int arr[] = {4, 6, 8, 5, 9,-1,-3,90,2314,8,-4};
heapSort(arr);
}
/***
* @description: 堆排序
* @param: arr
* @return: void
* @author ZhangJiaHao
* @date: 2022/1/11 13:40
*/
public static void heapSort(int arr[]) {
int temp = 0;
for (int i = arr.length/2-1;i>=0;i--){
adjustHeap(arr,i,arr.length);
}
for (int j = arr.length-1;j>0;j--){
temp=arr[j];
arr[j]=arr[0];
arr[0]=temp;
adjustHeap(arr,0,j);
}
System.out.println(Arrays.toString(arr));
}
/***
* @description: 将以i为对应的根节点的树构建为大顶堆
* @param: arr 数组
* @param: i 表示非叶子节点在数组中的索引
* @param: length 表示对多少个数字进行调整
* @return: void
* @author ZhangJiaHao
* @date: 2022/1/11 13:21
*/
public static void adjustHeap(int arr[], int i, int length) {
int temp = arr[i];
for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
// 左子节点的值小于右子节点的值
if (k + 1 < length && arr[k] < arr[k + 1]) {
k++; // k就指向右子节点
}
if (arr[k] > temp) { // 如果子节点大于父节点
arr[i] = arr[k];
i = k; // i指向k继续循环比较
} else {
break;
}
}
arr[i] = temp;
}
}