小灰灰的Yang
码龄5年
关注
提问 私信
  • 博客:15,453
    动态:13
    15,466
    总访问量
  • 11
    原创
  • 96,647
    排名
  • 51
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2019-09-26
博客简介:

weixin_45691429的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    85
    当月
    2
个人成就
  • 获得84次点赞
  • 内容获得5次评论
  • 获得105次收藏
  • 代码片获得281次分享
创作历程
  • 5篇
    2024年
  • 2篇
    2023年
  • 1篇
    2021年
  • 5篇
    2020年
成就勋章
TA的专栏
  • 细粒度
    1篇
兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

通过huggingface-cli下载数据集

huggingface-hub自带了huggingface-cli。如果下载的时候断了,再次执行命令就行,会接着之前的内容下载。此方法比git稳定好用!
原创
发布博客 2024.08.08 ·
885 阅读 ·
10 点赞 ·
0 评论 ·
8 收藏

使用 ROUGE 度量作为相似性函数的详细讲解

ROUGE(Recall-Oriented Understudy for Gisting Evaluation)是一种用于自动文本摘要和机器翻译评估的度量方法。它通过比较系统生成的文本和参考文本之间的重叠来评估生成文本的质量。的相似性度量并取平均值。ROUGE 度量的计算: 使用 ROUGE 度量来计算。我们将使用 ROUGE-1(单词级别的重叠)作为相似性度量。相似性平均值的计算: 将所有相似性度量的值取平均值。ROUGE-1和ROUGE-2计算示例。文本对的选择: 对于每个文本。计算 ROUGE-1。
原创
发布博客 2024.07.16 ·
575 阅读 ·
23 点赞 ·
0 评论 ·
18 收藏

GPT, API调用参数设置

可以从获取API key。
原创
发布博客 2024.07.16 ·
1479 阅读 ·
14 点赞 ·
0 评论 ·
11 收藏

图标下载地址

原文链接:https://blog.csdn.net/my_god_hei/article/details/118928336。
原创
发布博客 2024.07.16 ·
141 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

图标下载地址

原文链接:https://blog.csdn.net/my_god_hei/article/details/118928336。
原创
发布博客 2024.06.20 ·
365 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

利用git在github上传代码

利用git在github上传代码
原创
发布博客 2023.06.02 ·
216 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

使用vscode, 远程服务器, debug

生成launch.json文件,将"justMyCode"改为 false,并在最后加上。在vscode界面右上角,选择Debug Python File。run->start debugging(F5) ,或者右上角。ctrl+shift+p,选择需要的解释器。接下来就可以一步一步调试了,F5。python解释器选择。
原创
发布博客 2023.04.05 ·
955 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

非root用户在浪潮服务器上安装指定CUDA、cudnn、gcc等到指定目录 2021-08-18

**非root用户在浪潮服务器上安装指定CUDA、cudnn、gcc等到指定目录**前提:适用于服务器上管理员已安装好CUDA版本且无法满足自己需求1. 安装CUDA(这里以CUDA9.0为例,ubantu18.04)1.1 首先下载CUDA9.0,下载连接:下载连接1.2 进入服务器端口,在cuda9.0_package路径下输入以下命令:sh cuda_9.0.176_384.81_linux.run --override orsh cuda_9.0.176_384.81_
原创
发布博客 2021.08.18 ·
1707 阅读 ·
8 点赞 ·
0 评论 ·
15 收藏

细粒度

细粒度https://blog.csdn.net/qq_16525279/article/details/80415786
转载
发布博客 2020.09.06 ·
187 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2020-08-08ECO

《ECO:Efficient Convolutional Network for Online Video Understanding》PaddlePaddle论文复现营  https://aistudio.baidu.com/aistudio/education/group/info/13401、介绍   使用单帧的图像,在很多情况下已经可以获得一个不错的初始分类结果了,而相邻帧间的很多信息都是冗余的。因此,ECO 中在一个时序邻域内仅使用单帧图像。   为了获得长时程的图像帧间的上下文关系,仅仅
原创
发布博客 2020.08.08 ·
247 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

细粒度图像的研究

转自https://blog.csdn.net/qq_16525279/article/details/80415786?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecas
转载
发布博客 2020.07.22 ·
801 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Deep learning for fine-grained image analysis: A survey

细粒度图像分析的深度学习综述Abstract计算机视觉是利用机器来理解和分析图像的过程,是人工智能的一个重要分支。在CV的各个研究领域中,细粒度图像分析(FGIA)是一个由来已久的基本问题,在各种实际应用中已经变得无处不在。FGIA的任务是从从属类别分析视觉对象,例如鸟类种类或汽车模型。由于细粒度的特性导致的小类间变化和大的类内变化使其成为一个具有挑战性的问题。在深度学习蓬勃发展的过程中,近年来FGIA应用深度学习技术取得了显著进展。本文旨在系统地综述基于深度学习的FGIA技术的最新进展。具体来说,
原创
发布博客 2020.07.21 ·
1699 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

浅谈ATSS

文章链接(https://github.com/sfzhang15/ATSS)或者(https://paperswithcode.com/paper/bridging-the-gap-between-anchor-based-and)Contributions指出基于锚框和无锚检测器的本质区别在于如何定义正训练样本和负训练样本。提出了一种自适应的训练样本选择方法,根据目标的统计特性自动选择正、负训练样本。证明在图像上的每个位置平铺多个锚来检测对象是一个无用的操作。在不引入任何额外开销的情况下
原创
发布博客 2020.07.19 ·
6051 阅读 ·
14 点赞 ·
4 评论 ·
24 收藏