10.23 Bzoj 4568. [Scoi2016]幸运数字
题意:
树上每个结点都有值,询问两点之间路径上的点,取任意点,使其异或和是最大的在这条路径上所有的异或和
解题思路:
树上线性基,利用倍增来实现
注意:
c[i][j]代表i节点上的2^(j - 1)路径上的线性基,因为这是节点上的倍增,而不是以边为递增
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e4 + 10;
const int maxk = 15;
typedef long long ll;
int tot, head[maxn];
ll n, q;
ll w[maxn];
ll c[maxn][20][65];
ll ans[65];
int f[maxn][20], d[maxn];//
struct Edge {
int to, nxt;
} edge[maxn << 1];
void add_edge(int u,int v) {
edge[++tot].nxt = head[u], head[u] = tot, edge[tot].to = v;
edge[++tot].nxt = head[v], head[v] = tot, edge[tot].to = u;
}
void add(ll *a, ll x) {//线性基模板
for(int i = 60; i >= 0; i--)
{
if(x & (1ll << i))//注意,如果i大于31,前面的1的后面一定要加ll
{
if(a[i])x ^= a[i];
else {
a[i] = x;
break;//插入成功就退出
}
}
}
}
void merge(ll *a, ll *b) {
for (int i = 0; i <= 60; i++) //必须一个一个插入,跟顺序无关
add(a, b[i]);
}
void dfs(int u, int pre) {
for (int i = 0; i <= maxk; i++) {
f[u][i + 1] = f[f[u][i]][i];
merge(c[u][i + 1], c[u][i]);//合并线性基
merge(c[u][i + 1], c[f[u][i]][i]);
}
for (int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].to;
if (v == pre) continue;
f[v][0] = u;
d[v] = d[u] + 1;
dfs(v, u);
}
}
void lca(int u, int v) {//每次跳边上倍增,都要合并线性基
if (d[u] < d[v]) swap(u, v);
for (int i = maxk; i >= 0; i--)
if (d[f[u][i]] >= d[v]) {
merge(ans, c[u][i]), u = f[u][i];//与答案合并
}
for (int i = maxk; i >= 0; i--)
if (f[u][i] != f[v][i])
merge(ans, c[u][i]), merge(ans, c[v][i]), u = f[u][i], v = f[v][i];
if (u != v)
merge(ans, c[u][0]), merge(ans, c[v][0]), u = f[u][0];
merge(ans, c[u][0]);
}
ll ans_max() {
ll res = 0;
for(int i = 60; i >= 0; i--)//记得从线性基的最高位开始
if((res ^ ans[i]) > res) res ^= ans[i];
return res;
}
int main() {
cin >> n >> q;
for (int i = 1; i <= n; i++)
cin >> w[i];
for (int i = 1; i <= n; i++)
add(c[i][0], w[i]);
int u, v;
for (int i = 1; i < n; i++) {
cin >> u >> v;
add_edge(u, v);
}
dfs(1, 0);
while (q--) {
memset(ans, 0, sizeof (ans));//清空ans的线性基
cin >> u >> v;
lca(u, v);
cout << ans_max() << endl;
}
}