10.23 Bzoj 4568. [Scoi2016]幸运数字 (树上线性基+倍增)

10.23 Bzoj 4568. [Scoi2016]幸运数字

题意:

树上每个结点都有值,询问两点之间路径上的点,取任意点,使其异或和是最大的在这条路径上所有的异或和

解题思路:

树上线性基,利用倍增来实现
注意:
c[i][j]代表i节点上的2^(j - 1)路径上的线性基,因为这是节点上的倍增,而不是以边为递增

AC代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e4 + 10;
const int maxk = 15;
typedef long long ll;
int tot, head[maxn];
ll n, q;
ll w[maxn];
ll c[maxn][20][65];
ll ans[65];
int f[maxn][20], d[maxn];//
struct Edge {
    int to, nxt;
} edge[maxn << 1];
void add_edge(int u,int v) {
    edge[++tot].nxt = head[u], head[u] = tot, edge[tot].to = v;
    edge[++tot].nxt = head[v], head[v] = tot, edge[tot].to = u;
}
void add(ll *a, ll x) {//线性基模板
    for(int i = 60; i >= 0; i--)
    {
        if(x & (1ll << i))//注意,如果i大于31,前面的1的后面一定要加ll
        {
            if(a[i])x ^= a[i];
            else {
                a[i] = x;
                break;//插入成功就退出
            }
        }
    }
}
void merge(ll *a, ll *b) {
    for (int i = 0; i <= 60; i++) //必须一个一个插入,跟顺序无关
        add(a, b[i]);
}
void dfs(int u, int pre) {
    for (int i = 0; i <= maxk; i++) {
        f[u][i + 1] = f[f[u][i]][i];
        merge(c[u][i + 1], c[u][i]);//合并线性基
        merge(c[u][i + 1], c[f[u][i]][i]);
    }
    for (int i = head[u]; i; i = edge[i].nxt) {
        int v = edge[i].to;
        if (v == pre) continue;
        f[v][0] = u;
        d[v] = d[u] + 1;
        dfs(v, u);
    }
}
void lca(int u, int v) {//每次跳边上倍增,都要合并线性基
    if (d[u] < d[v]) swap(u, v);
    for (int i = maxk; i >= 0; i--)
        if (d[f[u][i]] >= d[v]) {
        	merge(ans, c[u][i]), u = f[u][i];//与答案合并
		}
    for (int i = maxk; i >= 0; i--)
        if (f[u][i] != f[v][i])
            merge(ans, c[u][i]), merge(ans, c[v][i]), u = f[u][i], v = f[v][i];
    if (u != v)
        merge(ans, c[u][0]), merge(ans, c[v][0]), u = f[u][0];
    merge(ans, c[u][0]);
}
ll ans_max() {
    ll res = 0;
    for(int i = 60; i >= 0; i--)//记得从线性基的最高位开始
    if((res ^ ans[i]) > res) res ^= ans[i];
    return res;
 }   
int main() {
    cin >> n >> q;
    for (int i = 1; i <= n; i++)
        cin >> w[i];
    for (int i = 1; i <= n; i++)
        add(c[i][0], w[i]);
    int u, v;
    for (int i = 1; i < n; i++) {
        cin >> u >> v;
        add_edge(u, v);
    }
    dfs(1, 0);
    while (q--) {
        memset(ans, 0, sizeof (ans));//清空ans的线性基
        cin >> u >> v;
        lca(u, v);
        cout << ans_max() << endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值