商品浏览量 购买转化率

浏览量 转化率
合并表格 拥有相同的结构。pd.concat()函数 很容易将他们合并成一张完整的销售数据表 用列表框起来
改变数据类型
时间类型数据 字符转时间函数 时间转字符函数 格式转换函数 set_index() reset_index()
时间点 datetime 时间间隔 timedelta 时期period
detetime(2008,8,8,20,8)
将DataFrame数据转为datetime pd.to_datetime(df[“create_time”])
将数据精确到秒 dt.strftime("%Y-%m") dt是为了定位列 M代表分钟 m代表月
整型 浮点型 字符串 布尔型 通过astype()进行转换
字符串时只有当数据是整数时 才能使用astype(int)
浮点型时 之江将数据保留整数部分
布尔类型 将0会成为false
index转换 先指定一个index 可以转换回来 再转换回去 reser_index()

适用 join参数 outer inner 内外链接
join=“outer” 默认外连接 外连接像一种默认的堆叠,拥有相同列索引,合并一列 不同列索引 单独成一列。所有列的值都被被保留,缺失的值用NaN填充补全。
纵向pd.concat()
浏览量按月度来统计的
分组函数groupby() 和重采样 resample()
将字符串转换为时间类型 并指定index
然后使用groupby() 进行分组 同时使 resample()函数
最后还原索引index
df.set_index(“date”,inplace=True)
在完成数据的预处理之后
搭建量化交易模型前的准备 移动窗口,移动平均值 移动平均线

移动窗口 就是窗口向一端移动默认是从左到右 一个单位一个单位地从左至右移动
窗口里的值叫做观测值

移动均值 是指对一组数据 逐个推移 依次计算数据地均值 反映长期地趋势
若不满足窗口大小则为空值

移动平均值 称为MA 蓝色线所表示的df中收盘价 比较原始线较为光滑

移动窗口函数 rolling()
ma10 = df.rolling(window=10).mean()
rolling()参数min_periods设置最小观测值
可选参数min_periods 默认值为必选参数移动窗口地大小
rolling()函数除了可以和mean()等聚合函数搭配使用

plt.plot(df.index,df[“close”],color=“blue”,label=“df”)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值