复数(概念性质详解)《初等数论及其应用》

本文介绍了复数的基础知识,包括复数的定义、模、共轭、加减乘除运算以及指数幂的形式。强调了复数在理解时可抽象为二维向量,并通过欧拉公式阐述了复数与向量之间的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整理的算法模板合集: ACM模板

点我看算法全家桶系列!!!

实际上是一个全新的精炼模板整合计划


以下内容摘自 我的文章:算法竞赛中的数论问题 - 数论全家桶(信奥 / 数竞 / ACM)作者孟繁宇四万字十三万字符竞赛数论完全总结,将会择机发布,敬请期待 ~

0x90.0 复数

复数分为实部和虚部,可以描述为一个二元组 ( x , y ) (x,y) (x,y),表示这个数等于 x + y − 1 x+y\sqrt {-1} x+y1 。一般用 i i i 表示 − 1 \sqrt{-1} 1

由于是个二元组,所以它在理解的时候可以抽象为一个二维向量,分布在平面直角坐标系上。

事实上,它确实也有不少性质和向量相同。

  • 复数的模

定义复数的模,为复平面原点到 ( a , b ) (a,b) (a,b)的距离,即 ∣ z ∣ = x 2 + y 2 |z|=\sqrt {x^2+y^2} z=x2+y2

定义 z z z范数 N ( z ) = ∣ z ∣ 2 = x 2 + y 2 N(z)=|z|^2=x^2+y^2 N(z)=z2=x2+y2

  • 共轭复数

复数 z = a + b i z=a+bi z=a+bi 的共轭是 z ′ = a − b i z'=a-bi z=abi,记作 z ˉ \bar z zˉ

性质: z × z ˉ = a 2 + b 2 z\times \bar z=a^2+b^2 z×zˉ=a2+b2 ∣ z ∣ = ∣ z ˉ ∣ |z|=|\bar z| z=zˉ

  • 复数的大小

复数可以看做和向量一样,无法比较大小。

  • 复数的加减

对应部 的加减

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁凡さん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值