整理的算法模板合集: ACM模板
实际上是一个全新的精炼模板整合计划
以下内容摘自 我的文章:算法竞赛中的数论问题 - 数论全家桶(信奥 / 数竞 / ACM)作者孟繁宇,四万字,十三万字符的竞赛数论完全总结,将会择机发布,敬请期待 ~
0x90.0 复数
复数分为实部和虚部,可以描述为一个二元组 ( x , y ) (x,y) (x,y),表示这个数等于 x + y − 1 x+y\sqrt {-1} x+y−1。一般用 i i i 表示 − 1 \sqrt{-1} −1。
由于是个二元组,所以它在理解的时候可以抽象为一个二维向量,分布在平面直角坐标系上。
事实上,它确实也有不少性质和向量相同。
- 复数的模
定义复数的模,为复平面原点到 ( a , b ) (a,b) (a,b)的距离,即 ∣ z ∣ = x 2 + y 2 |z|=\sqrt {x^2+y^2} ∣z∣=x2+y2
定义 z z z 的范数 N ( z ) = ∣ z ∣ 2 = x 2 + y 2 N(z)=|z|^2=x^2+y^2 N(z)=∣z∣2=x2+y2。
- 共轭复数
复数 z = a + b i z=a+bi z=a+bi 的共轭是 z ′ = a − b i z'=a-bi z′=a−bi,记作 z ˉ \bar z zˉ。
性质: z × z ˉ = a 2 + b 2 z\times \bar z=a^2+b^2 z×zˉ=a2+b2, ∣ z ∣ = ∣ z ˉ ∣ |z|=|\bar z| ∣z∣=∣zˉ∣。
- 复数的大小
复数可以看做和向量一样,无法比较大小。
- 复数的加减
对应部 的加减