BZOJ 2152 「国家集训队」聪聪可可(点分治)【BZOJ计划】

整理的算法模板合集: ACM模板

点我看算法全家桶系列!!!

实际上是一个全新的精炼模板整合计划


题目链接

https://hydro.ac/d/bzoj/p/2152

hydro 的 BZOJ 修复工程

https://www.luogu.com.cn/problem/P2634

Problem

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。

他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画 n n n 个“点”,并用 n − 1 n-1 n1 条“边”把这 n n n 个「点」恰好连通(其实这就是一棵树)。并且每条「边」上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是 3 3 3 的倍数,则判聪聪赢,否则可可赢。

聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。

Solution

树上路径信息问题显然考虑点分治。

由于树上路径只有两种情况:经过根和不经过根。通过点分治将不经过根的情况看作经过根的子问题来解决即可。

题目要求计算 3 3 3 的倍数的路径条数,所以我们只需要统计路径长度 m o d    3 \mod 3 mod3 即可。

c n t [ 0 / 1 / 2 ] \mathrm{cnt}[0/1/2] cnt[0/1/2] 表示路径长度 m o d    3 \mod 3 mod3 后的条数。

显然 d i s t ≡ 1 ( m o d 3 ) \mathrm{dist}\equiv 1\pmod 3 dist1(mod3) 的路径与 d i s t ≡ 2 ( m o d 3 ) \mathrm{dist}\equiv 2\pmod 3 dist2(mod3) 拼凑在一起就是 d i s t ≡ 0 ( m o d 3 ) \mathrm{dist}\equiv 0\pmod 3 dist0(mod3) ,由于点对不同顺序是不同方案,所以这种情况对答案的贡献为 c n t [ 1 ] × c n t [ 2 ] × 2 \mathrm{cnt}[1]\times \mathrm{cnt}[2]\times 2 cnt[1]×cnt[2]×2

对于 d i s t ≡ 0 ( m o d 3 ) \mathrm{dist}\equiv 0\pmod 3 dist0(mod3) 的路径中,任选两点均符合题意,我们可以选择同一个结点,对答案的贡献方案数为 c n t [ 0 ] × c n t [ 0 ] \mathrm{cnt}[0]\times \mathrm{cnt}[0] cnt[0]×cnt[0]

但是这样会多统计一些非经过根的路径,即在子树内部,未经过该分治点(根节点)的路径,我们计算以分支点的子结点的贡献减去即可。

Code

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 1e5 + 7, maxm = maxn << 1 | 7, INF = 0x3f3f3f3f;

int n, m, s, t;
ll ans;
int head[maxn], ver[maxm], nex[maxn], tot;
ll edge[maxn];
bool vis[maxn];
int siz[maxn];
int min_size;
int root;
ll dist[maxn];
ll cnt[50];

void init()
{
	memset(head, -1, sizeof head);
	memset(vis, 0, sizeof vis);
	tot = 0;
}

void add(int x, int y, int z)
{
	ver[tot] = y;
	edge[tot] = z;
	nex[tot] = head[x];
	head[x] = tot ++ ;
}

void get_root(int x, int fa, int n)
{
	siz[x] = 1;
	int max_size = 0;
	for (int i = head[x]; ~i; i = nex[i]) {
		int y = ver[i]; 
		if(y == fa || vis[y]) continue; 
		get_root(y, x, n);
		siz[x] += siz[y];
		max_size = max(max_size, siz[y]);
	}
	max_size = max(max_size, n - siz[x]);
	if(max_size < min_size)
		min_size = max_size, root = x;
}

void get_vertex_root_dist(int x, int fa)//非子结点到根的距离
{
	cnt[dist[x]] ++ ;
	for (int i = head[x]; ~i; i = nex[i]) {
		int y = ver[i];
		ll z = edge[i];
		if(y == fa || vis[y]) continue;
		dist[y] = (dist[x] + z) % 3;
		get_vertex_root_dist(y, x);
	}
}

ll cal(int x, ll z)
{
	memset(cnt, 0, sizeof cnt);
	dist[x] = z;
	cnt[dist[x]] ++ ;
	for (int i = head[x]; ~i; i = nex[i]) {
		int y = ver[i];
		ll z = edge[i];
		if(vis[y]) continue;
		dist[y] = (dist[x] + z) % 3;
		
		get_vertex_root_dist(y, x);
	}
	return cnt[1] * cnt[2] * 2 + cnt[0] * cnt[0];
}

void divide(int x)
{
	vis[x] = 1;
	ans += cal(x, 0); 
	for (int i = head[x]; ~i; i = nex[i]) {
		int y = ver[i];
		ll z = edge[i];  
		if(vis[y]) continue;
		ans -= cal(y, z);
		min_size = INF;
		get_root(y, x, siz[y]);
		divide(root);
	}
}

int main()
{
	init();
	scanf("%d", &n);
	for (int i = 1; i < n; ++ i) {
		int x, y, z;
		scanf("%d%d%d", &x, &y, &z);
		add(x, y, z % 3);
		add(y, x, z % 3);
	}
	min_size = INF;
	get_root(1, -1, n); 
	divide(root);
	ll down = 1ll * n * n;
	ll d = __gcd(ans, down);
	cout << ans / d << "/" << down / d << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁凡さん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值