题目
Description
一本书的页码从自然数 1 开始顺序编码直到自然数 n. 书的页码按照通常的习惯编排, 每个页码都不含多余的前导数字 0. 例如, 第 6 页用数字 6 表示,而不是 06 或 006 等。数字计数问题要求对给定书的总页码 n, 计算出书的全部页码中分别用到多少次数字
0
,
1
,
2
,
…
,
9
0,1, 2,…,9
0,1,2,…,9。
本题对于给定表示书的总页码的 10 进制整数
n
(
1
≤
n
≤
1
0
9
)
n (1 ≤ n ≤ 10^9)
n(1≤n≤109) 。编程计算书的全部页码中分别用到多少次数字
0
,
1
,
2
,
…
,
9
0,1,2,…,9
0,1,2,…,9。
Input
有多个测试用例。每个测试用例由一行组成,包含一个整数 n,表示书的总页码。
输入直至没有数据为止。
Output
对于每个测试用例,将输出一行,包含 10 10 10 个整数,其中第 k 个整数表示页码中用到数字 k-1 的次数,k=1,2,…,10. 注意:每行输出的整数之间用一个空格分隔。不能有多余的前导空格和后缀空格。
Sample Input
11
Sample Output
1 4 1 1 1 1 1 1 1 1
Hint
一本有 11 页的书,其页码分别是 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 1,2,3,4,5,6,7,8,9,10,11 1,2,3,4,5,6,7,8,9,10,11,其中有 1 个 0,4 个 1,数字 2-9 各 1 个。
题解一:暴力
会超时。。。
#include<iostream>
using namespace std;
int main(){
int n;
while(scanf("%d",&n)!=EOF){
int c[10]={0};
for(int i=1;i<=n;i++){
int tmp=i;
while(tmp){
c[tmp%10]++;
tmp/=10;
}
}
for(int i=0;i<=8;i++){
cout<<c[i]<<" ";
}
cout << c[9]<<endl;
}
return 0;
}
题解二:动态规划
分析
-
对于一位数 D D D 来说, 1 ∼ D 1\sim D 1∼D 中用到的数字个数即 1 ∼ D 1\sim D 1∼D 各一次。
如果 D = 9 D=9 D=9,那么0,1,…,9中 0 ∼ 9 0\sim 9 0∼9的数字就会被各用1次,要去除0的个数为1. -
对于两位数 CD 来说,我们考虑C可以等于0,
那么00, 01,…,09,10,11,…19,…,(C-1)0,…,(C-1)9, 0 ∼ C − 1 0\sim C-1 0∼C−1作为十位数就会被用到10次,然后 0 ∼ 9 0\sim 9 0∼9作为个位数就会被用C次;那么在C0,…,CD,C作为十位数会被用(D+1)次, 0 ∼ D 0\sim D 0∼D的数各用1次。
如果 D = 99 D=99 D=99,那么 0 ∼ 9 0\sim 9 0∼9的数字就会被用10+10次,要去除0的个数为10+1次。 -
对于三位数 ABC
那么在 000 , 001 , . . . , 099 , . . . , ( A − 1 ) 00 , . . . , ( A − 1 ) 99 000,001,...,099,...,(A-1)00,...,(A-1)99 000,001,...,099,...,(A−1)00,...,(A−1)99, 0 ∼ A − 1 0\sim A-1 0∼A−1作为百位数就会被用到100次,然后 0 ∼ 9 0\sim 9 0∼9 作为十位数就会被用 10 × A 10\times A 10×A 次,然后 0 ∼ 9 0\sim 9 0∼9作为个位数就会被用 10 × A 10\times A 10×A 次,那么A00,A01,…,ABC,那么 A A A作为百位数被用了(BC+1)次,然后对于BC我们可以回到两位数的考虑方式。
如果 D = 999 D=999 D=999,那么 0 ∼ 9 0\sim 9 0∼9的数字就会被用 100 + 100 + 100 = 10 × 20 + 1 0 2 100+100+100=10\times20+10^2 100+100+100=10×20+102次,要去除0的个数为100+10+1次。
根据这个思想很容易发现规律,对于n 位的数字 0 到 n 位的数字9,设 0~9 各数字会被用到的次数为F(n),则有 F(n) = 10 * F(n-1) + 10^(n-1),其中F(1)= 1
我们把结果记入一个名为dp 的数组:dp[0] = 0, dp[1]=1, dp[2]=20, dp[3]=300 , …
// 997,len=3
// 000-899
// 0-(num[3]-1) 百位数 100次
// 0-9 十位数 + 个位数 dp[2]*(num[3]-1+1)次
// 900-997
// 9 百位数 97+1次
// 97
// 00-89
// 0-(num[2]-1) 十位数 10次
// 0-9 个位数 dp[1]*(num[2]-1+1)次
// 90-97
// 9 十位数 7+1次
// 0-(num[1]-1) 个位数 1次
#include<iostream>
#include<cmath>
using namespace std;
int main(){
long long dp[12]={0};
for (int i = 1; i < 12;++i) {
dp[i] = 10 * dp[i - 1] + round(pow(10.0, i - 1));
}
long long zero[12]={0};
for (int i = 1; i < 12;++i) {
for (int j = 0; j < i;++j)
zero[i] += round(pow(10.0, j));
}
int n;
while(cin>>n) {
long long c[10]={0};
int num[12] = {0};
int temp = n;
int len = 0;
while(temp) {
++len;
num[len] = temp % 10;
temp /= 10;
}
if(round(pow(10.0,len))-n==1) {
cout << dp[len] - zero[len]<<" ";
for(int i=1;i<=8;i++){
cout<<dp[len]<<" ";
}
cout << dp[len]<<endl;
}
else{
int r = n;
for (int i = len; i > 0;--i) {
r = r % int(round(pow(10.0, i - 1)));
c[num[i]] += (r+1);
for (int j = 0; j < num[i]; ++j){
c[j] += round(pow(10.0, i - 1));
}
for (int k = 0; k <= 9; ++k) {
c[k] += dp[i - 1] * (num[i]);
}
}
c[0] -= zero[len];
for(int i=0;i<=8;i++){
cout<<c[i]<<" ";
}
cout << c[9]<<endl;
}
}
return 0;
}