1200_统计数字问题

题目

Description

一本书的页码从自然数 1 开始顺序编码直到自然数 n. 书的页码按照通常的习惯编排, 每个页码都不含多余的前导数字 0. 例如, 第 6 页用数字 6 表示,而不是 06 或 006 等。数字计数问题要求对给定书的总页码 n, 计算出书的全部页码中分别用到多少次数字 0 , 1 , 2 , … , 9 0,1, 2,…,9 0129
本题对于给定表示书的总页码的 10 进制整数 n ( 1 ≤ n ≤ 1 0 9 ) n (1 ≤ n ≤ 10^9) n(1n109) 。编程计算书的全部页码中分别用到多少次数字 0 , 1 , 2 , … , 9 0,1,2,…,9 0129

Input

有多个测试用例。每个测试用例由一行组成,包含一个整数 n,表示书的总页码。
输入直至没有数据为止。

Output

对于每个测试用例,将输出一行,包含 10 10 10 个整数,其中第 k 个整数表示页码中用到数字 k-1 的次数,k=1,2,…,10. 注意:每行输出的整数之间用一个空格分隔。不能有多余的前导空格和后缀空格。

Sample Input

11

Sample Output

1 4 1 1 1 1 1 1 1 1

Hint

一本有 11 页的书,其页码分别是 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 1,2,3,4,5,6,7,8,9,10,11 1234567891011,其中有 1 个 0,4 个 1,数字 2-9 各 1 个。

题解一:暴力

会超时。。。

#include<iostream>
using namespace std;
int main(){
    int n;
    while(scanf("%d",&n)!=EOF){
        int c[10]={0};
        for(int i=1;i<=n;i++){
            int tmp=i;
            while(tmp){
                c[tmp%10]++;
                tmp/=10;
            }
        }
        for(int i=0;i<=8;i++){
            cout<<c[i]<<" ";
        }
        cout << c[9]<<endl;
    }
    return 0;
}

题解二:动态规划

分析

  • 对于一位数 D D D 来说, 1 ∼ D 1\sim D 1D 中用到的数字个数即 1 ∼ D 1\sim D 1D 各一次。
    如果 D = 9 D=9 D=9,那么0,1,…,9中 0 ∼ 9 0\sim 9 09的数字就会被各用1次,要去除0的个数为1.

  • 对于两位数 CD 来说,我们考虑C可以等于0,
    那么00, 01,…,09,10,11,…19,…,(C-1)0,…,(C-1)9, 0 ∼ C − 1 0\sim C-1 0C1作为十位数就会被用到10次,然后 0 ∼ 9 0\sim 9 09作为个位数就会被用C次;那么在C0,…,CD,C作为十位数会被用(D+1)次, 0 ∼ D 0\sim D 0D的数各用1次。
    如果 D = 99 D=99 D=99,那么 0 ∼ 9 0\sim 9 09的数字就会被用10+10次,要去除0的个数为10+1次。

  • 对于三位数 ABC
    那么在 000 , 001 , . . . , 099 , . . . , ( A − 1 ) 00 , . . . , ( A − 1 ) 99 000,001,...,099,...,(A-1)00,...,(A-1)99 000,001,...,099,...,(A1)00,...,(A1)99, 0 ∼ A − 1 0\sim A-1 0A1作为百位数就会被用到100次,然后 0 ∼ 9 0\sim 9 09 作为十位数就会被用 10 × A 10\times A 10×A 次,然后 0 ∼ 9 0\sim 9 09作为个位数就会被用 10 × A 10\times A 10×A 次,那么A00,A01,…,ABC,那么 A A A作为百位数被用了(BC+1)次,然后对于BC我们可以回到两位数的考虑方式。
    如果 D = 999 D=999 D=999,那么 0 ∼ 9 0\sim 9 09的数字就会被用 100 + 100 + 100 = 10 × 20 + 1 0 2 100+100+100=10\times20+10^2 100+100+100=10×20+102次,要去除0的个数为100+10+1次。

根据这个思想很容易发现规律,对于n 位的数字 0 到 n 位的数字9,设 0~9 各数字会被用到的次数为F(n),则有 F(n) = 10 * F(n-1) + 10^(n-1),其中F(1)= 1

我们把结果记入一个名为dp 的数组:dp[0] = 0, dp[1]=1, dp[2]=20, dp[3]=300 , …

    // 997,len=3
    // 000-899
    //    0-(num[3]-1) 百位数 100次
    //    0-9      十位数 + 个位数 dp[2]*(num[3]-1+1)次
    // 900-997
    //    9 百位数 97+1次
    //       97
    //        00-89
    //           0-(num[2]-1) 十位数 10次
    //           0-9      个位数 dp[1]*(num[2]-1+1)次
    //        90-97
    //           9 十位数 7+1次
    //           0-(num[1]-1) 个位数 1次   
#include<iostream>
#include<cmath>
using namespace std;
int main(){
    long long dp[12]={0};
    for (int i = 1; i < 12;++i) {
        dp[i] = 10 * dp[i - 1] + round(pow(10.0, i - 1));
    }
    long long zero[12]={0};
    for (int i = 1; i < 12;++i) {
        for (int j = 0; j < i;++j)
            zero[i] += round(pow(10.0, j));
    }
    int n;
    while(cin>>n) {
        long long c[10]={0};
        int num[12] = {0};
        int temp = n;
        int len = 0;
        while(temp) {
            ++len;
            num[len] = temp % 10;
            temp /= 10;
        }
        if(round(pow(10.0,len))-n==1) {
            cout << dp[len] - zero[len]<<" ";
            for(int i=1;i<=8;i++){
                cout<<dp[len]<<" ";
            }
            cout << dp[len]<<endl;
        }   
        else{  
            int r = n;
            for (int i = len; i > 0;--i) {
                r = r % int(round(pow(10.0, i - 1)));
                c[num[i]] += (r+1);
                for (int j = 0; j < num[i]; ++j){
                    c[j] += round(pow(10.0, i - 1));
                }
                for (int k = 0; k <= 9; ++k) {
                    c[k] += dp[i - 1] * (num[i]);
                }
            }
            c[0] -= zero[len];
            for(int i=0;i<=8;i++){
                cout<<c[i]<<" ";
            }
            cout << c[9]<<endl;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值