B. 图综合练习--拓扑排序(非队列)

题目描述

已知有向图,顶点从0开始编号,求它的求拓扑有序序列。

拓扑排序算法:给出有向图邻接矩阵
1.逐列扫描矩阵,找出入度为0且编号最小的顶点v

2.输出v,并标识v已访问

3.把矩阵第v行全清0

重复上述步骤,直到所有顶点输出为止

–程序要求–
若使用C++只能include一个头文件iostream;若使用C语言只能include一个头文件stdio
程序中若include多过一个头文件,不看代码,作0分处理
不允许使用第三方对象或函数实现本题的要求

输入

第一行输入一个整数t,表示有t个有向图

第二行输入n,表示图有n个顶点

第三行起,输入n行整数,表示图对应的邻接矩阵

以此类推输入下一个图的顶点数和邻接矩阵

输出

每行输出一个图的拓扑有序序列

示例输入

2
5
0 1 0 1 1
0 0 1 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 0
7
0 0 0 0 0 0 0
1 0 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 1 1
0 1 0 0 0 0 0
0 0 0 1 0 1 0

示例输出

0 1 3 2 4
4 6 5 1 3 2 0

代码

#include <iostream>
using namespace std;

int main()
{
  int t;
  cin >> t;
	while(t--)
	{
	    int n;
	    cin >> n;
	    int visit[n]{};
	    int f[n][n]{};
	    int in[n]{};
	    for(int i=0;i<n;i++)
	    {
	        for(int j=0;j<n;j++)
	        {
	            int w;
	            cin >>w;
	            f[i][j]=w;
	            if(w)	
	            	in[j]++;
	        }
	    }
	    int k=n;
	    while(k--)
	    {
	        for(int i=0;i<n;i++)
	        {
	            if(in[i]==0&&visit[i]==0)
	            {
	                cout << i << ' ';
	                visit[i]++;
	                for(int j=0;j<n;j++)
	                {
	                    if(f[i][j]!=0)
	                    {
	                        in[j]--;
	                        f[i][j]=0;
	                    }
	                }
	            }
	        }
	    }
	    cout << endl;
	}
}

给出了一种不需要队列的拓扑排序方法

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页