C++动态规划问题—爬楼梯

38 篇文章 0 订阅
27 篇文章 0 订阅

爬楼梯

1.问题描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1+ 12. 2

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1+ 1+ 12. 1+ 23. 2+ 1

提示:

  • 1 <= n <= 45

2.暴力解法: 递归

2.1代码实现

#include <iostream>
#include <vector>

using namespace std;
class Solution {
public:
    int climbStairs(int n) {
        if(n==1){
            return 1;
        }
        if (n==2){
            return 2;
        }
        vector<int>dp(n+1,0);
        dp[1]=1,dp[2]=2;
        return climbStairs(n-1)+ climbStairs(n-2);
    }
};
int main() {
    Solution s;
    cout<<s.climbStairs(35)<<endl;
    return 0;
}

2.2缺点

递归方法会导致大量的重复计算,这会使程序在处理较大的 n 时变得非常慢,并且空间复杂度极高

3.动态规划

3.1代码实现

#include <iostream>
#include <vector>

using namespace std;
class Solution {
public:
    int climbStairs(int n) {
        if(n==1){
            return 1;
        }
        if (n==2){
            return 2;
        }
        vector<int>dp(n+1,0);
        dp[1]=1,dp[2]=2;
        for (int i = 3; i <=n ; ++i) {
            dp[i]=dp[i-1]+dp[i-2]; // 动态规划的核心步骤 状态转移方程
        }
        return dp[n];
    }
};
int main() {
    Solution s;
    cout<<s.climbStairs(5)<<endl;
    return 0;
}

3.2解释

  1. 动态规划数组dp[i] 表示爬到第 i 级台阶的方法数。
  2. 初始化dp[1] = 1dp[2] = 2,因为爬到第1级台阶有1种方法(直接爬),爬到第2级台阶有2种方法(一次爬1级或两次都爬1级)。
  3. 状态转移方程:对于 i > 2dp[i] = dp[i - 1] + dp[i - 2],表示到达第 i 级台阶的方法数等于到达第 i-1 级台阶的方法数加上到达第 i-2 级台阶的方法数。
  4. 结果:最后返回 dp[n],即爬到第 n 级台阶的方法数。

这样,你的代码就通过动态规划避免了重复计算,提高了效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值