爬楼梯
1.问题描述
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
提示:
1 <= n <= 45
2.暴力解法: 递归
2.1代码实现
#include <iostream>
#include <vector>
using namespace std;
class Solution {
public:
int climbStairs(int n) {
if(n==1){
return 1;
}
if (n==2){
return 2;
}
vector<int>dp(n+1,0);
dp[1]=1,dp[2]=2;
return climbStairs(n-1)+ climbStairs(n-2);
}
};
int main() {
Solution s;
cout<<s.climbStairs(35)<<endl;
return 0;
}
2.2缺点
递归方法会导致大量的重复计算,这会使程序在处理较大的 n
时变得非常慢,并且空间复杂度极高。
3.动态规划
3.1代码实现
#include <iostream>
#include <vector>
using namespace std;
class Solution {
public:
int climbStairs(int n) {
if(n==1){
return 1;
}
if (n==2){
return 2;
}
vector<int>dp(n+1,0);
dp[1]=1,dp[2]=2;
for (int i = 3; i <=n ; ++i) {
dp[i]=dp[i-1]+dp[i-2]; // 动态规划的核心步骤 状态转移方程
}
return dp[n];
}
};
int main() {
Solution s;
cout<<s.climbStairs(5)<<endl;
return 0;
}
3.2解释
- 动态规划数组:
dp[i]
表示爬到第i
级台阶的方法数。 - 初始化:
dp[1] = 1
和dp[2] = 2
,因为爬到第1级台阶有1种方法(直接爬),爬到第2级台阶有2种方法(一次爬1级或两次都爬1级)。 - 状态转移方程:对于
i > 2
,dp[i] = dp[i - 1] + dp[i - 2]
,表示到达第i
级台阶的方法数等于到达第i-1
级台阶的方法数加上到达第i-2
级台阶的方法数。 - 结果:最后返回
dp[n]
,即爬到第n
级台阶的方法数。
这样,你的代码就通过动态规划避免了重复计算,提高了效率。