2020年四月蓝桥杯省内模拟赛-Python组 [赛题+题解]`

文章详细介绍了多个编程题目,包括计算合法括号序列数量、排列字母单词数量、反倍数个数、凯撒密码加密、摆动序列个数、螺旋矩阵构建、村庄通电成本以及小明植树覆盖面积。涉及数据结构、算法和数学知识在编程中的应用。
摘要由CSDN通过智能技术生成


感觉我的答案大部分是对的,(逃

填空题1

问题描述
  由1对括号,可以组成一种合法括号序列:()。
  由2对括号,可以组成两种合法括号序列:()()、(())。
  由4对括号组成的合法括号序列一共有多少种?
答案提交
  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案: 14
菜鸡只能一个一个找,我的方法是先找有一个完整()的情况,如(((()))),再找有两个完整()的情况,(())(()),((()))(),()((())),((())()),(()(())),((()())),再找有三个完整()的情况,())()(),()(())(),()()(()),(()()()),(()())(),()(()()),最后找四个完整()的情况()()()()。这样可以尽量避免有遗漏;

填空题2

问题描述
  将LANQIAO中的字母重新排列,可以得到不同的单词,如LANQIAO、AAILNOQ等,注意这7个字母都要被用上,单词不一定有具体的英文意义。
  请问,总共能排列如多少个不同的单词。
答案提交
  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案:2520
LANQIAO,有七个字母,所以7x6x5x4x3x2x1 == 5040,

但A有两个,所以要除2,5040/2==2520;
在这里插入图片描述

填空题3

问题描述
  在计算机存储中,12.5MB是多少字节?
答案提交
  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案:13107200
问的是字节,最后要乘8
在这里插入图片描述

填空题4

问题描述
  一个包含有2019个结点的无向连通图,最少包含多少条边?
答案提交
  这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
答案:2018
没有回路的无向图是连通的当且仅当它是树,即等价于:|E|=|V|-1。
在这里插入图片描述

编程题1 反倍数

问题描述
  给定三个整数 a, b, c,如果一个整数既不是 a 的整数倍也不是 b 的整数倍还不是 c 的整数倍,则这个数称为反倍数。
  请问在 1 至 n 中有多少个反倍数。
输入格式
  输入的第一行包含一个整数 n。
  第二行包含三个整数 a, b, c,相邻两个数之间用一个空格分隔。
输出格式
  输出一行包含一个整数,表示答案。
样例输入
30
2 3 6
样例输出
10
样例说明
  以下这些数满足要求:1, 5, 7, 11, 13, 17, 19, 23, 25, 29。
评测用例规模与约定
  对于 40% 的评测用例,1 <= n <= 10000。
  对于 80% 的评测用例,1 <= n <= 100000。
  对于所有评测用例,1 <= n <= 1000000,1 <= a <= n,1 <= b <= n,1 <= c <= n。

在for循环里面嵌套if语句,计数即可;

n = int(input())
a,b,c = map(int,input().split())
count = 0
for i in range(n+1):
    if i%a !=0 and i%b!=0 and i%c!=0:
        count += 1
print(count)

编程题2 凯撒密码

给定一个单词,请使用凯撒密码将这个单词加密。
  凯撒密码是一种替换加密的技术,单词中的所有字母都在字母表上向后偏移3位后被替换成密文。即a变为d,b变为e,…,w变为z,x变为a,y变为b,z变为c。
  例如,lanqiao会变成odqtldr。
输入格式
  输入一行,包含一个单词,单词中只包含小写英文字母。
输出格式
  输出一行,表示加密后的密文。
样例输入
lanqiao
样例输出
odqtldr
评测用例规模与约定
  对于所有评测用例,单词中的字母个数不超过100。
  
加3求余就好了,代码如下;

a = input()
b = []
c = []

for i in a:
    b.append(i)
for j in range(0, len(b)):
    if ord(b[j]) < 97:
        d = ord(b[j]) + 35
    else:
        d = ord(b[j]) + 3
    c.append(chr(d))
e =''.join(c)
print(e)

编程题3 摆动序列

问题描述
  如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a[2i]<a[2i-1], a[2i+1]>a[2i]。
  小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。
输入格式
  输入一行包含两个整数 m,n。
输出格式
  输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。
样例输入
3 4
样例输出
14
样例说明
  以下是符合要求的摆动序列:
  2 1 2
  2 1 3
  2 1 4
  3 1 2
  3 1 3
  3 1 4
  3 2 3
  3 2 4
  4 1 2
  4 1 3
  4 1 4
  4 2 3
  4 2 4
  4 3 4
评测用例规模与约定
  对于 20% 的评测用例,1 <= n, m <= 5;
  对于 50% 的评测用例,1 <= n, m <= 10;
  对于 80% 的评测用例,1 <= n, m <= 100;
  对于所有评测用例,1 <= n, m <= 1000。
  
找规律,就是规律不太好找,非常不好找

answer =0
m,n = map(int,input().split())
a = [[0 for _ in range(1024)] for _ in range(1024)]
for i in range(1, n + 1):
    a[1][i] = n - i + 1

for i in range(2, m + 1):
    if i & 1:
        for j in range(n, 0, -1):
            a[i][j] = (a[i - 1][j - 1] + a[i][j + 1]) % 10000

    else:
        for j in range(1, n + 1):
            a[i][j] = (a[i - 1][j + 1] + a[i][j - 1]) % 10000
if m & 1:
    answer = a[m][1]
else:
    answer = a[m][n]
print(answer)

编程题4 螺旋矩阵

问题描述
  对于一个 n 行 m 列的表格,我们可以使用螺旋的方式给表格依次填上正整数,我们称填好的表格为一个螺旋矩阵。
  例如,一个 4 行 5 列的螺旋矩阵如下:
  1 2 3 4 5
  14 15 16 17 6
  13 20 19 18 7
  12 11 10 9 8
输入格式
  输入的第一行包含两个整数 n, m,分别表示螺旋矩阵的行数和列数。
  第二行包含两个整数 r, c,表示要求的行号和列号。
输出格式
  输出一个整数,表示螺旋矩阵中第 r 行第 c 列的元素的值。
样例输入
4 5
2 2
样例输出
15
评测用例规模与约定
  对于 30% 的评测用例,2 <= n, m <= 20。
  对于 70% 的评测用例,2 <= n, m <= 100。
  对于所有评测用例,2 <= n, m <= 1000,1 <= r <= n,1 <= c <= m。

先把这个n*m矩阵构造出来,然后直接输出就好了。

n,m = map(int,input().split())
r,c = map(int,input().split())
a = [[0 for _ in range(m)] for _ in range(n)]
b = [[0 for _ in range(m)] for _ in range(n)]
i = 1
x = 0
y = 0
while i < n * m:

    while y < m and b[x][y] == 0:
        a[x][y] = i
        b[x][y] = 1
        i += 1
        y += 1

    y -= 1
    x += 1

    while x < n and b[x][y] == 0:
        a[x][y] = i
        b[x][y] = 1
        i += 1
        x += 1

    x -= 1
    y -= 1

    while y >= 0 and b[x][y] == 0:
        a[x][y] = i
        b[x][y] = 1
        i += 1
        y -= 1

    y += 1
    x -= 1

    while x >= 0 and b[x][y] == 0:
        a[x][y] = i
        b[x][y] = 1
        i += 1
        x -= 1
    x += 1
    y += 1
print(a[r-1][c-1])

编程题5 村庄通电

问题描述
  2015年,全中国实现了户户通电。作为一名电力建设者,小明正在帮助一带一路上的国家通电。
  这一次,小明要帮助 n 个村庄通电,其中 1 号村庄正好可以建立一个发电站,所发的电足够所有村庄使用。
  现在,这 n 个村庄之间都没有电线相连,小明主要要做的是架设电线连接这些村庄,使得所有村庄都直接或间接的与发电站相通。
  小明测量了所有村庄的位置(坐标)和高度,如果要连接两个村庄,小明需要花费两个村庄之间的坐标距离加上高度差的平方,形式化描述为坐标为 (x_1, y_1) 高度为 h_1 的村庄与坐标为 (x_2, y_2) 高度为 h_2 的村庄之间连接的费用为
  sqrt((x_1-x_2)(x_1-x_2)+(y_1-y_2)(y_1-y_2))+(h_1-h_2)*(h_1-h_2)。
  在上式中 sqrt 表示取括号内的平方根。请注意括号的位置,高度的计算方式与横纵坐标的计算方式不同。
  由于经费有限,请帮助小明计算他至少要花费多少费用才能使这 n 个村庄都通电。
输入格式
  输入的第一行包含一个整数 n ,表示村庄的数量。
  接下来 n 行,每个三个整数 x, y, h,分别表示一个村庄的横、纵坐标和高度,其中第一个村庄可以建立发电站。
输出格式
  输出一行,包含一个实数,四舍五入保留 2 位小数,表示答案。
样例输入
4
1 1 3
9 9 7
8 8 6
4 5 4
样例输出
17.41
评测用例规模与约定
  对于 30% 的评测用例,1 <= n <= 10;
  对于 60% 的评测用例,1 <= n <= 100;
  对于所有评测用例,1 <= n <= 1000,0 <= x, y, h <= 10000。

pass

编程题6 小明植树

问题描述
  小明和朋友们一起去郊外植树,他们带了一些在自己实验室精心研究出的小树苗。
  小明和朋友们一共有 n 个人,他们经过精心挑选,在一块空地上每个人挑选了一个适合植树的位置,总共 n 个。他们准备把自己带的树苗都植下去。
  然而,他们遇到了一个困难:有的树苗比较大,而有的位置挨太近,导致两棵树植下去后会撞在一起。
  他们将树看成一个圆,圆心在他们找的位置上。如果两棵树对应的圆相交,这两棵树就不适合同时植下(相切不受影响),称为两棵树冲突。
  小明和朋友们决定先合计合计,只将其中的一部分树植下去,保证没有互相冲突的树。他们同时希望这些树所能覆盖的面积和(圆面积和)最大。
输入格式
  输入的第一行包含一个整数 n ,表示人数,即准备植树的位置数。
  接下来 n 行,每行三个整数 x, y, r,表示一棵树在空地上的横、纵坐标和半径。
输出格式
  输出一行包含一个整数,表示在不冲突下可以植树的面积和。由于每棵树的面积都是圆周率的整数倍,请输出答案除以圆周率后的值(应当是一个整数)。
样例输入
6
1 1 2
1 4 2
1 7 2
4 1 2
4 4 2
4 7 2
样例输出
12
评测用例规模与约定
  对于 30% 的评测用例,1 <= n <= 10;
  对于 60% 的评测用例,1 <= n <= 20;
  对于所有评测用例,1 <= n <= 30,0 <= x, y <= 1000,1 <= r <= 1000。

dfs+剪枝

def c(step, sum):
    global answer
    if step == n:
        answer = max(answer, sum)
        return
    for i in range(n):
        if b[i] == 0:
            d = r[i]
            if a(i) == False:
                r[i] = 0
            b[i] = 1
            c(step + 1, sum + r[i] * r[i])
            b[i] = 0
            r[i] = d
def a(i):
    for j in range(n):
        if i != j and b[j]:
            if (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]) < (r[i] + r[j]) * (r[i] + r[j]):#这句是核心代码
                return False
    return True

if __name__ == '__main__':
    PI = 3.14
    answer = 0
    x = []
    y = []
    r = []
    n = int(input())
    b = [0 for _ in range(n)]
    for _ in range(n):
        xt, yt, rt = map(int, input().split())
        x.append(xt)
        y.append(yt)
        r.append(rt)
    c(0, 0)
print(answer)


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值