3. 初体验
Deepseek可以进行文本生成,代码编写等功能,下面体验一下并和在其他平台的进行比较。
3.1 文本生成
春节假期电影哪吒之魔童闹海非常火爆,分别让deepseek官网,硅基流动,OpenRouter和秘塔AI搜索引擎生成一段生成一段哪吒2魔童闹海的推广词,比较思考过程,生成内容和生成时间。
平台 | deepseek官网 | 硅基流动 | OpenRouter | 秘塔AI搜索引擎 |
---|---|---|---|---|
思考过程 | 好的,用户让我帮忙写一段《哪吒2:魔童闹海》的推广词。首先,我需要了解用户的需求是什么。推广词通常用于吸引观众,突出电影的亮点,激发兴趣。可能用户需要这段文字用于社交媒体、海报或者预告片宣传。 接下来,我得考虑目标受众是谁。哪吒系列之前的电影主要吸引的是年轻人和家庭观众,所以推广词要兼顾热血、亲情、视觉特效等元素。同时,可能需要突出续集的新看点,比如新的剧情发展、角色成长或者更震撼的视效。 然后,回顾第一部《哪吒之魔童降世》的成功点,比如“我命由我不由天”的主题,角色哪吒的反叛与成长,以及亲情友情的描写。续集可能会延续这些元素,同时加入新的冲突,比如对抗天劫、敖丙的戏份增加,或者新的反派出现。 用户可能希望推广词既有激情又有感染力,使用短句和有力的词汇,比如“热血重燃”、“颠覆想象”、“震撼特效”等。同时需要点出情感线,比如“逆天改命”、“为爱而战”,让观众感受到故事的深度和情感冲击。 还要注意结构,通常开头吸引眼球,中间介绍亮点,结尾呼吁观看。可能需要加入一些疑问句或感叹句来增强互动性,比如“这一次,他能否逆天改命?”或者“你,准备好见证神话新篇了吗?” 另外,要避免剧透太多,保持神秘感,同时突出电影的卖点,比如IMAX版本、上映日期等。可能需要检查有没有使用到适合的关键词,比如“国漫巅峰”、“神话新篇”来强调电影的地位和品质。 最后,确保语言流畅,有节奏感,适合快速阅读,能够在短时间内传递核心信息。可能需要多次修改,调整用词,使推广词更具冲击力和吸引力。 | 无 | 无 | 好扽的,我需要帮用户生成一段《哪吒2魔童闹海》的推广词,并参考我搜索到的资料。首先,我得仔细看一下我搜索到的资料,找出电影的主要卖点和亮点。 提到电影的原声大碟和推广曲,由吕艳婷和瀚墨演唱,这可能可以用来强调音乐部分的吸引力。和讲的是预告片的震撼效果,角色关系的深化,尤其是哪吒与敖丙的复杂关系,还有视觉效果升级。和提到台词的力量,比如“小爷是魔,那又如何”,这可以作为宣传的亮点之一。和提到哪吒的成长故事和对抗命运的主题,这些情感点应该突出。 和说明观众反响热烈,尤其是喜剧元素和角色互动,比如土拨鼠的搞笑场景,可以增加推广词的趣味性。和提到角色设计的升级,数量更多且更精致,还有中式元素如火云纹,这些视觉细节值得强调。和强调了票房成功和文化传承,结合传统与现代技术,这能展示电影的影响力。 另外,提到票房超过《长津湖》,成为冠军,以及续集的创新,比如新角色和故事线,这也是卖点。提到宣传曲和番外短片,可以结合春节档期,吸引家庭观众。还提到周边商品热销,显示电影的市场热度。 需要整合这些信息,突出电影的高燃场面、感人亲情、喜剧元素、视觉特效以及文化内涵。同时要加入具体的例子,如经典台词、角色关系变化,以及音乐和票房成绩,让推广词更具说服力和感染力。最后,确保引用正确的证据编号,比如提到票房时用,提到音乐部分用,视觉特效用等。 |
生成内容 | 🔥 全新高燃剧情:宿命重压之下,哪吒能否打破“魔童”桎梏? 🌊 颠覆视觉奇观:深海龙宫秘境、九霄雷霆之战,国漫特效再攀巅峰! 💥 人性深度碰撞:亲情、友情、苍生大义,笑泪交织直击灵魂! “若天命不公,我便掀了这海、踏破这天!” 202X年X月X日,影院见证神话新章! IMAX 3D巨幕,沉浸体验神话史诗! 🔥 魔童归来,这一次,为爱而战! #哪吒2魔童闹海# #我命由我不由天# 你,准备好迎接这场颠覆三界的狂澜了吗? | 《哪吒2:魔童闹海》——颠覆三界,再掀狂澜! 他是天不怕地不怕的魔童,也是守护苍生的逆天英雄! 这一次,哪吒将重返东海,掀起一场惊天动地的风暴! 面对龙族的阴谋与挑衅,他将以无畏之姿,踏浪而行,逆天改命! 友情与背叛,正义与邪恶, 在波澜壮阔的东海之上, 哪吒将用热血与勇气,书写属于自己的传奇篇章! “我命由我不由天!” 这一次,他将以魔童之力,闹翻东海,震撼三界! 2023年,与你一同见证这场史诗级的冒险! 《哪吒2:魔童闹海》—— 一场视觉与心灵的双重震撼, 一次颠覆传统的热血传奇! 你,准备好了吗? | 哪吒2:魔童闹海》——燃爆暑期档,颠覆命运,重写传奇! 当天地不仁,规则不公,谁敢站出来挑战命运?那个高呼“我命由我不由天”的魔童哪吒,再次归来,这一次,他要闹翻的不只是东海,而是整个天地秩序! 颠覆传统,热血升级 “若前方无路,我便踏出一条路!若天地不容,我便扭转这乾坤!”哪吒的怒吼,点燃了每个人心中不屈的火焰。他用行动告诉我们,规则是用来打破的,命运是用来改变的! 💥 视觉炸裂,国漫巅峰 九霄龙吟,巨浪滔天,冰与火的碰撞,仙与魔的交锋!每一帧画面都是视觉盛宴,每一场战斗都震撼人心。这是一次国漫技术的新突破,更是一场视觉与心灵的双重冲击。 💖 情感交织,笑泪齐飞 哪吒与家人、朋友之间的羁绊,让人笑中带泪,泪中带笑。母亲的温柔,父亲的反思,敖丙的坚定,哪吒的成长,每一个角色都鲜活立体,每一段故事都触动心弦。 金句频出,引爆网络 “因为我们都太年轻,不知天高地厚!”哪吒的每一句台词都铿锵有力,直击人心,势必成为新一轮的网络爆款金句。他的叛逆与执着,正是我们心中的少年气! 燃炸剧情,反转不断 哪吒不再是那个被规则束缚的魔童,他将挑战天地,打破不公,带领万妖冲破枷锁!跌宕起伏的剧情,意想不到的反转,绝对让你全程肾上腺素飙升! 这个夏天,和哪吒一起,冲破命运的枷锁,燃爆你的热血与激情! 《哪吒2:魔童闹海》现已震撼上映,走进影院,见证这场颠覆天地的传奇之战! #哪吒2魔童闹海# #颠覆命运# #国漫崛起# | 《哪吒2魔童闹海》震撼来袭!燃爆新春,见证逆天改命! 五年前,“我命由我不由天”点燃热血;五年后,“小爷是魔,那又如何”再掀狂潮!《哪吒2魔童闹海》强势登陆2025春节档,票房已破50亿,登顶中国影史冠军!续作全面升级,以极致视效与动人情义,续写魔童涅槃之路! 高燃成长,冲破命运枷锁! 哪吒肉身碎裂仍浴火觉醒,以“赤子之心”打破偏见,豪言“若前方无路,我便踏出一条路”!与敖丙的羁绊从惺惺相惜到暗生裂痕,复杂关系引爆剧情张力。深海龙族复仇滔天,百万妖兽席卷陈塘关,海底岩浆倒灌的末日奇观令人屏息! 亲情与笑泪交织,春节必看合家欢! 殷夫人一句“遇事要冷静”道尽天下父母心,哪吒与父母的温情互动直戳泪点。更有土拨鼠“抢食”名场面、戏腔打油诗“能降妖来会作诗”,笑点密集引爆全场!原班人马回归,角色建模精致升级,火云纹刺绣、中式包边细节尽显匠心。 音乐震撼,文化破圈! 推广曲《我乃哪吒三太子》由哪吒、敖丙声优吕艳婷、瀚墨倾情献唱,敖广人形登场配以磅礴旋律,吟唱直击灵魂。阿鲲操刀的超燃BGM以三个音符点燃万妖反抗,视听盛宴再创国漫巅峰! 传统与现代交融,定义新时代神话! 影片将AI技术与传统绘画深度融合,2000+特效镜头打造东方美学奇观。从“反抗命运”到“推翻规则”,哪吒精神映照时代命题,成为中国文化自信的鲜活符号! 大年初一,见证魔童闹海! 带上家人,感受热血与温情齐飞,笑泪共视效一色!哪吒已至,不服来战! |
生成质量(本人主观评价) | 优良,展示思考过程,生成内容有感染力。生成时间未明确,考虑到了上市的时间问题 | 良,生成内容较有感染力,但是无思考过程,时间有问题 | 良好,生成内容较有感染力,且加上了话题,但是无思考过程,时间有问题。 | 优秀,能够展示思考过程,结合前一部的内容,搜索相关内容进行了整合,体现电影内容具有共鸣,时间也正确。并且能够列出相关来源,相关人物和事件。 |
生成时间 | 19s | 15.9s | 30s | / |
备注 | 使用深度搜索和联网功能。 | 使用DeepSeek-V3 | 使用DeepSeek-V3 free | 秘塔AI接入满血版DeepSeek R1推理模型 |
总的来看,四个平台都能较好的完成推广词的生成。此次生成本人主观认为秘塔AI>deepseek官网>OpenRouter>硅基流动。对于不同文本生成工作,可以使用不同平台,多次迭代生成内容,从而找到最满意的方案。总体而言,这些平台已经大幅降低了广告词等文本生成的难度,极大的提升了生成的效率和质量。
3.2 代码编写
使用leetcode上LeetCode 热题 100的70,爬楼梯问题进行测试,分别让deepseek官网,硅基流动,OpenRouter和秘塔AI搜索引擎编写代码,测试编程时间和算法的复杂度。
3.2.1 题目:爬楼梯
3.2.4 平台表现
本人代码,本人约一年半时间未接触leetcode题目,再次编写需要15min时间。(野驴还我编程能力,哭!)
class Solution:
def climbStairs(self, n: int) -> int:
if n<=1:
return 1
a = 1
b = 1
for i in range(n-1):
a,b = b,a+b
return b
输入:你好,假设你正在爬楼梯。需要 n 阶你才能到达楼顶,每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?请使用Python编程,输入楼梯阶数n,反馈共有多少种方案。
平台 | deepseek官网 | 硅基流动 | OpenRouter | 秘塔AI搜索引擎 |
---|---|---|---|---|
思考过程 | 嗯,用户问的是爬楼梯的问题,需要n阶台阶,每次可以爬1或2步,问有多少种不同的方法。首先,我得想这个问题怎么解决。这个问题应该是一个经典的动态规划问题,或者是递归问题吧。不过递归的话可能会有重复计算,所以动态规划可能更高效。 我记得斐波那契数列和这个问题很像。比如,当n=1的时候,只有一种方法;n=2的时候,两种方法,1+1或者直接2;n=3的时候,就是n=1的方法加上n=2的方法,也就是3种。看起来确实符合斐波那契数列的规律,也就是f(n) = f(n-1) + f(n-2)。这样的话,可以用动态规划来解,或者用递归加记忆化,或者直接用数学公式。 但用户要求用Python编程,所以需要写一个函数,输入n,输出方案数。那我应该怎么实现这个呢?用动态规划的话,可以创建一个数组或者变量来保存前两步的结果,然后迭代计算到n的值。比如,初始化a=1(n=1),b=2(n=2),然后从3开始循环到n,每次更新a和b的值,最后返回b或者a,具体取决于n的大小。 不过还要考虑n的边界情况,比如n=0的话可能返回0?但题目里说是到达楼顶需要n阶,所以n应该是正整数吧。比如当n=0时可能没有方法,或者需要处理特殊情况。不过题目可能保证n是正整数,所以在代码里应该处理n=1和n=0的情况。 比如,如果n=0,返回0;n=1返回1;n=2返回2;然后对于更大的n,用循环计算斐波那契数列。这样应该可以覆盖所有情况。 或者可以用递归的方法,但是递归会有很多重复计算,当n很大的时候效率会很低,比如n=40的话,递归可能超时或者栈溢出。所以动态规划是更好的选择。 那具体来说,代码怎么写呢?比如: def climbStairs(n): if n == 0: return 0 elif n == 1: return 1 elif n == 2: return 2 a, b = 1, 2 for _ in range(3, n+1): c = a + b a = b b = c return b 这样应该可以正确计算。比如测试n=3,得到3;n=4,得到5,以此类推。那这样应该正确。 不过有没有其他方法?比如用斐波那契公式直接计算?不过对于编程来说,动态规划的方法更直观,而且时间复杂度是O(n),空间复杂度是O(1),应该已经足够高效了。 那用户的需求是输入n,返回方案数。所以Python函数应该接受一个整数参数n,然后返回对应的值。例如,输入3,返回3;输入5,返回8等。 另外,还需要考虑n的取值范围,比如n可能很大,但Python的整数不会有溢出的问题,所以不用担心。 总结一下,这个问题的解法是斐波那契数列的动态规划实现,时间复杂度低,空间复杂度也低,适用于较大的n。 | 这个问题可以通过动态规划来解决。我们可以定义一个数组 dp ,其中 dp[i] 表示爬到第 i 阶楼梯的不同方法数。根据题意,每次可以爬 1 或 2 个台阶,因此 dp[i] = dp[i-1] + dp[i-2] 。 | 这个问题是一个经典的动态规划问题,类似于斐波那契数列。我们可以使用动态规划来解决。 | 嗯,用户的问题是关于爬楼梯的不同方法数量,需要用Python编写一个程序。首先,我得理解问题。题目是说每次可以爬1或2个台阶,求n阶楼梯有多少种不同的方法到达楼顶。我发现这个问题和斐波那契数列有关联,可能可以用动态规划或者递归来解决。 提到LeetCode 70题的爬楼梯问题实际上是斐波那契数列的变式,解法类似。中的Python代码展示了用循环实现的动态规划方法,使用三个变量lower、middle、higher来迭代计算结果。而则提供了更简洁的代码,用pre和cur两个变量交替计算,这也是常见的斐波那契数列优化方法。比如当n=3时,答案应该是3,但的示例中给出的输入3输出3,但代码中的循环次数是n-2次,当n=3时循环执行一次,计算出higher等于middle+lower=2+1=3,所以返回higher是正确的。 此外,和都提到动态规划的思路,用dp数组来存储每一步的方法数,初始条件为dp[0]=1和dp[1]=1,之后每个dp[i] = dp[i-1] + dp[i-2]。不过,根据的代码示例,其实可以只用两个变量来节省空间复杂度,不需要维护整个数组。比如当n=4时,结果应该是5,中的测试用例也验证了这一点。 不过需要注意的是,不同证据中的初始条件可能不同。例如,中的代码处理n=1和n=2的情况直接返回1和2,而中的代码从pre=1和cur=1开始循环,当n=2时返回cur=2。这是因为斐波那契数列的起始点可能会有差异,比如有些将F(0)=0, F(1)=1,但这里的问题可能需要调整初始值。比如,根据问题描述,当n=1时,应为1种方法;n=2时,两种方法;n=3时,三种方法,这正好对应斐波那契数列的F(3)=3,F(4)=5等。 所以正确的递推式应该是f(n) = f(n-1) + f(n-2),其中f(1)=1,f(2)=2。这与斐波那契数列的起始索引不同,例如这里的f(n)相当于斐波那契数列中的F(n+1)。 现在,编写Python代码的话,应该如何处理呢?中的代码使用了三个变量,而的代码更简洁。例如,当n=1时返回1,n=2时返回2,n>=3时开始循环。例如,当n=3时,循环执行一次(因为n-2=1次),计算cur = pre + cur,pre更新为之前的cur。初始时pre=1,cur=2(对应n=2的情况),循环一次后pre=2,cur=3(对应n=3的结果)。所以对于n>=3的情况,可以通过循环n-2次得到结果。 综合各个证据中的正确方法,对比它们的实现方式,最优化的应该是用两个变量的动态规划,时间复杂度O(n),空间复杂度O(1)。因此,正确的Python代码可以像中的方案,初始化pre=1,cur=1,然后循环n-1次,每次更新pre和cur。比如,当n=1时,循环次数是0次,返回cur=1。n=2时循环一次,cur=pre+cur=1+1=2。所以,这种初始条件更统一,不需要单独处理n=1和n=2的情况。 不过,需要验证一下是否正确。例如,当n=3时,循环两次。初始pre=1,cur=1。第一次循环i=1,pre=1,cur=2;第二次i=2,pre=2, cur=3。这时返回cur=3,正确。而中的代码循环次数是range(1,n),也就是当n=3时,i=1和i=2,循环两次,得到cur=3。所以该代码的处理是正确的。 可能存在矛盾的是中的示例输入n=3时,输出3,而代码中的初始条件对于n=3进入else分支,循环n-2=1次,higher初始是3,经过一次循环后变为2+1=3,然后返回higher=3。这也正确。这说明两种方法都可以得到正确的结果,但具体的初始条件设置不同。 因此,结合多个证据中的正确代码,最终的Python函数应正确计算斐波那契数列的第n+1项,或者等价地,采用动态规划的方式。最后,需要确保代码的鲁棒性,处理n=0或n=1的情况。但根据问题描述,n是正整数,所以不需要考虑n=0。 综上,正确的Python代码可以像中所示,使用两个变量迭代,或者如中的使用三个变量。下面选择一种简洁且高效的写法。 要解决爬楼梯问题,我们可以使用动态规划或类似斐波那契数列的方法。核心思路是:第 n 阶的方案数等于到达第 n-1 阶和第 n-2 阶方案数的总和,因为最后一步可以是爬1阶(从 n-1)或2阶(从 n-2)。 |
生成内容 | 要解决爬楼梯问题,可以使用动态规划的方法,其本质是斐波那契数列的变种。每次可以选择爬1阶或2阶,因此到达第n 阶的方法数等于到达第n-1 阶和第n-2 阶的方法数之和。以下是Python实现:(代码见下方:) 代码说明: 动态规划优化:用两个变量 a 和 b 分别保存前两步的结果,空间复杂度优化至 O(1)。 边界处理:当 n 为0或1时,直接返回1(如题目隐含 n ≥ 0)。 时间复杂度:O(n),只需一次遍历即可完成计算。 示例输出: 输入 n=3,输出 3 种方法(1+1+1, 1+2, 2+1)。 输入 n=5,输出 8 种方法 | 详见下方: | 详见下方: | 详见下方: |
生成质量 | 优秀,具有分析过程,代码演示,代码说明等,自动分析了算法的时间和空间复杂度。 | 良好,分析过程简单,时间段,代码演示,说明,但是没有主动解释算法的时间和空间复杂度。程序的空间复杂度高。 | 优良,分析过程简单,时间段,代码演示,说明,程序的空间复杂度高。主动解释算法的时间和空间复杂度,说明有优化程序 | 优秀,具有分析过程,代码演示,代码说明等,自动分析了算法的时间和空间复杂度。并且能够列出相关来源,相关人物和事件,查找相关的程序更加方便。 |
生成时间 | 33s | 25s | / | / |
备注 | 使用深度搜索和联网功能。 | 使用DeepSeek-V3 | 使用DeepSeek-V3 free | 秘塔AI接入满血版DeepSeek R1推理模型 |
deepseek的代码:
def climb_stairs(n: int) -> int:
if n <= 1:
return 1
a, b = 1, 1
for _ in range(2, n + 1):
a, b = b, a + b
return b
n = int(input("请输入楼梯的阶数n:"))
print(f"共有 {climb_stairs(n)} 种不同的方法爬到楼顶。")
硅基流动的代码(使用数组,空间复杂度高,输入优化命令可以生成类似上方的程序):
def climb_stairs(n):
if n == 1:
return 1
dp = [0] * (n + 1)
dp[1] = 1
dp[2] = 2
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
# 输入楼梯阶数 n
n = int(input("请输入楼梯阶数 n: "))
# 输出共有多少种方案
print(f"共有 {climb_stairs(n)} 种不同的方法可以爬到楼顶。")
OpenRouter的代码:
def climb_stairs(n):
if n == 1:
return 1
if n == 2:
return 2
# 初始化前两个值
dp = [0] * (n + 1)
dp[1] = 1 # 爬 1 阶有 1 种方法
dp[2] = 2 # 爬 2 阶有 2 种方法
# 从第 3 阶开始计算
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2] # 方法数等于前两阶方法数的和
return dp[n]
# 输入楼梯阶数 n
n = int(input("请输入楼梯阶数 n: "))
# 输出结果
result = climb_stairs(n)
print(f"爬到 {n} 阶楼顶共有 {result} 种方法。")
秘塔AI搜索引擎的代码:
def climbStairs(n: int) -> int:
if n <= 2:
return n
pre, cur = 1, 2
for _ in range(2, n):
pre, cur = cur, pre + cur
return cur
对此问题,上述平台均能在1min以内完成问题分析,代码编写,演示等功能,已经基本和成熟的程序员类似,远快于新手或者长期不进行编程的人。而且能够自动分析代码的优化方案。个人评价秘塔AI>deepseek官网>OpenRouter=硅基流动。对于不同问题,可能具有不同表现,需要进行迭代,寻找最优,最简介的程序。
上述AI平台极大的便捷了我们的文本生成,代码编写等工作。然后AI生成内容真假难辨,我们需要独立思考,认真分辨。AI时代已经到达。