- 博客(72)
- 资源 (1)
- 收藏
- 关注
原创 YOLOV3配置过程遇到的种种问题和坑——艰辛路上的坑
YOLOV3配置过程遇到的种种问题和坑目前我所使用的环境:Python 3.7.6ubuntu 19.04比较容易出问题的就是tensorflow、tensorboard、torch、torchvision几个比较好的网站:https://pytorch.org/get-started/locally/https://www.freesion.com/article/432370...
2020-04-11 21:40:32 8809 10
原创 OpenCV图像处理算法——12(《基于二维伽马函数的光照不均匀图像自适应校正算法》)
基于二维伽马函数的光照不均匀图像自适应校正算法前言这是OpenCV图像处理专栏的第十二篇文章,今天为大家介绍一个用于解决光照不均匀的图像自适应校正算法。光照不均匀其实是非常常见的一种状况,为了提升人类的视觉感受或者是为了提升诸如深度学习之类的算法准确性,人们在解决光照不均衡方面已经有大量的工作。一起来看看这篇论文使用的算法吧,论文名为:《基于二维伽马函数的光照不均匀图像自适应校正算法》。算法...
2020-02-24 21:27:17 3126 2
原创 【Github】教你在github弃用密码认证之后配置SSH协议进行网络通信
Github SSH配置原先一直使用https协议在git和github之间进行网络通信,但是在2021年8月13日更新之后,github弃用了原来的密码形式的认证,改用Personal Access Token作为认证方式,经过网上搜索资料后发现,ssh协议比https协议更好用,而且现在github官方推荐也是使用ssh进行配置。配置SSH Key在自己电脑上生成一个SSH Key(如果先前已经生成,则跳过)ssh-keygen -t rsa -b 4096 -C "your_email
2021-08-14 22:58:36 547 1
原创 【论文阅读笔记】HLA-Face Joint High-Low Adaptation for Low Light Face Detection
HLA-Face Joint High-Low Adaptation for Low Light Face Detection摘要充分利用现有的正常光数据,并探索如何将面部探测器从正常光线调整到低光。这项任务的挑战是,正常和低光之间的差距对于像素级和物体级别来说太大而复杂。因此,大多数现有的low light enhance和适应方法不达到所需的performance。本文是DARK FACE为基准,针对现有的正常照度图像,将图像调整成低照度图像,不需要标签一个是像素级外观的差距,例如不足,照明,
2021-05-03 12:34:46 2128 3
原创 【Python】Anaconda使用技巧
conda 使用技巧Anaconda 之导出环境/从外部安装环境导出已有环境conda env export > environment.yaml 环境会被保存在 environment.yaml文件中。复现环境conda env create -f environment.yaml
2021-03-18 09:35:15 381
原创 【数据库】docker配置openGauss数据库
openGauss多系统配置文章目录openGauss多系统配置For Windows User1. 进入docker的官方网站2. 安装docker3. 运行docker4. 在docker中使用openGaussFor Linux UserFor Windows User1. 进入docker的官方网站进入docker的官方网站下载docker的客户端Link: https://www.docker.com/products/docker-desktop2. 安装docker3. 运行do
2021-03-03 21:00:55 4762 2
原创 【Docker】Windows10下配置Docker
Docker配置文章目录Docker配置For Windows User1. 进入docker的官方网站2. 安装docker3. 运行docker测试For Windows User1. 进入docker的官方网站进入docker的官方网站下载docker的客户端Link: https://www.docker.com/products/docker-desktop2. 安装docker运行该安装包不要安装WSL点ok安装完成点击之后会自动将当前用户登出,重新登录就
2021-03-03 20:39:43 2213 3
原创 【目标检测】ObjectDetection结构组成理解
目标检测结构理解文章目录目标检测结构理解1.目标检测的核心组成1.1 Backbone1.2 Neck1.3 Head1.4 总结2. 目标检测其他组成部分2.1 Bottleneck2.2 GAP2.3 Embedding2.4 Skip-connections2.5 正则化和BN方式2.6 损失函数2.7 激活函数3. 举例3.1 YOLOv4目标检测网络结构3.2 说明4. 其他概念4.1 Downstream Task4.2 Temperature Parameters4.3 Warm up4.4
2021-02-25 17:36:45 4132 1
原创 【github】解决git克隆/上传速度过慢
解决git克隆/上传速度过慢注: 使用本文的前提是已经购买了梯子,并且使用相关的软件进行代理之后的操作。问题原因:从github上clone或者download一个项目很慢。1. 设置代理你需要知道你本地的socks5代理ip地址和端口。如果socks5(SSR)例如。127.0.0.1端口1080然后使用此命令设置代理git config --global http.https://github.com.proxy socks5://127.0.0.1:1080git config
2021-02-16 00:56:28 3358 2
原创 【深度学习】语义分割——综述
语义分割什么是语义分割?通俗且具体到实际图像上来说,语义分割其实就是对于细化版的分类,就是对于一张图像上说,传统的图像分类是把图像中出现的物体进行检测并识别是属于什么类别的,也就是对于一整张图片进行分类。那么现在就有人想对于图中每一个像素点都进行分类。与分类不同的是,深度网络的最终结果是唯一重要的,语义分割不仅需要在像素级别上进行区分,而且还需要一种机制将编码器不同阶段学习到的区分特征投影到像素空间上。当我们把一张图上某一个像素点都进行分类后,每一个像素点都会有被赋予一个类别。当每一个像素都被标记上
2021-02-12 17:11:16 11044 8
原创 【C++学习】模板的使用
C++模板文章目录C++模板函数模板基本语法模板使用普通函数与函数模板类在C++中有一种叫做模板的类型,他是一种特殊的数据类型,使用模板就赋予函数和类更加抽象化的表示,使用模板我们对于一些需要做到同样操作但因为数据类型的不同而导致需要写很多个逻辑相同但是数据类型不同的函数和类。这样既浪费空间也浪费时间,所以为了能够更加高效使用我们自己定义的函数和类型就有了模板这样的一个类型。使用模板能够减少一些不必要的重复代码,使得我们编写的代码更加灵活。函数模板基本语法在C++中使用template这个关键字来
2021-01-18 21:11:01 176
原创 「ArchLinux」AchLinux使用日记——解决方案大全
ArchLinux使用日记说在前面的话:本博客是用于记录平时在使用ArchLinux时遇到的一些错误的解决方案(Arch大法好!!!)给同样使用ArchLinux的用户(Arch教徒)们提供一个参考的解决方案,本博客会不定期更新,喜欢的朋友可以持续关注。本博客主要记录使用Archlinux中所遇到的问题的记录以及使用Archlinux时的一些小技巧,给大家的看的同时我自己也能记录一些平时遇到的错误,以便忘了之后不知道怎么解决的时候提供一个参考方向。问题记录及解决方案Archlinux使用小
2021-01-13 14:32:47 463
原创 【深度学习】GAN生成对抗网络
GAN文章目录GAN1.论文解读1.1 摘要简介1.1.1 研究背景1.1.2 生成效果1.1.3 研究意义1.2 介绍1.论文解读1.1 摘要简介核心要点提出了一个基于对抗的新生成式模型,它由一个生成器和一个判别器组成生成器的目标是学习到样本的数据分布,从而能生成样本欺骗判别器;判别器的目标是判断输入样本是生成/真实的概率GAN模型等同于博弈论中的二人零和博弈对于任意的生成器和判别器,都存在一个独特的全局最优解在本文中,生成器和判别器都由多层感知机实现,整个网络可以用反向传播算法来
2020-10-30 06:52:44 1041
原创 【数学建模】数学建模算法学习其三(支持向量机)
支持向量机(SVM)简述支持向量机要解决的一个问题是怎么让两个类(也可以是多个类别)分割最大化。也就是说,我们通过我们的训练,得到一个分类器(支持向量机算法所构成的),使得让我们把新的样本输入进来进行分类的时候能够使得我们预测的错误最小化。相当于就是用一个超平面去分割多个数据,分成两类或多个类。而为了使得分类预测的错误最小化,我们就需要找到两个分类之间的分离边缘最大化,分离边缘最大化就是指我们要把数据限定在一个范围里面去进行分类。通过SVM学习就是为了找到最大化这个边缘的超平面,这个边缘就是指两个边界
2020-08-06 14:40:28 992
原创 【数学建模】数学建模算法学习其二(K-means聚类算法)
K-means聚类算法简述聚类是指将数据划分成多个组的任务,每一个组都叫做簇。聚类的目标就是要划分数据,使得每一个组里面的元素非常相似,但不同组里面的数据又非常不同,简单来说就是叫分类。我们通过聚类可以很方便地让我们对数据进行处理,把相似的数据分成一类,从而可以使得数据更加清晰。K-means是聚类算法中最典型的一个,也是最简单、最常用的一个算法之一。这个算法主要的作用是将相似的样本自动归到一个类别中。通过设定合理的KKK值,能够决定不一样的聚类效果。K-means算法原理与理解基本原理假定给定
2020-08-05 14:00:51 2150
原创 【数学建模】数学建模算法学习其一(主成分分析法)
主成分分析法简述主成分分析中运用了多元统计分析中最重要的降维与分析评价方法,也就是为了去统计多变量的统计分析方法。主成分分析主要是为了希望用较少的变量去解释原来数据中大部分的差异。将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分数据的区别的几个新变量,即所谓主成分在数据压缩、消除冗余和数据噪音消除等领域都有广泛的应用,一般我们提到降维最容易想到的算法就是它。计算步骤对原始数据进行标准化处理其中,即xˉj,sj\bar{x}_j,s_jx
2020-08-04 10:59:26 3213 1
原创 深度学习之【PyTorch入门】——基本数据类型和维度变换
数据类型Pytorch中的数据类型数据类型比较pythonpytorchIntIntTensorfloatFloatTensorInt arrayIntTensor arrayFloat arrayFloatTensor arrayString-位置不同的数据类型(CPU和GPU)数据类型CPU TensorGPU Tensortorch.float32torch.FloatTensortorch.cuda.Flo
2020-07-25 16:37:38 695
原创 【YOLO学习】从YOLOv1到YOLOv2的YOLO学习
从YOLOv1到YOLOv2的YOLO学习文章目录从YOLOv1到YOLOv2的YOLO学习YOLOv2与v1的区别YOLOv2网络结构YOLOv2聚类提取先验YOLOv2-Anchor BoxYOLOv2与v1的区别v1训练是用224×224224\times224224×224,测试时用的是448×448448\times448448×448可能会导致模型与图像大小不同,v2的时候训练又额外进行了10次448×448448\times448448×448的微调使用了高分辨率分类器,map提升
2020-06-22 17:14:14 588
原创 【YOLO学习】从YOLOv1开始的YOLO学习之路
从YOLOv1开始的YOLO学习之路文章目录从YOLOv1开始的YOLO学习之路前言YOLO算法整体思路核心思想网络结构学习位置loss计算置信度误差与优缺点前言YOLO是一个单阶段的检测算法,他就是把检测问题转化成回归问题,一个CNN就搞定了,同时也可以对视频进行实时检测,应用范围非常广。YOLO算法整体思路核心思想要预测一张图像上的物体,比如要预测一个狗,那么我们要怎么去确定这个狗的位置?那么我们首先输入一张S×SS\times SS×S的格子的图片(这里为了方便理解,就是把原本的像素点
2020-06-19 10:10:24 750
原创 【YOLO学习】目标检测中的基础指标和参数以及阶段
目标检测中各阶段的意义文章目录目标检测中各阶段的意义深度学习中经典的检测方法使用一个阶段(One-Stage)的算法的优缺点使用两个阶段(Two-Stage)的算法优缺点目标检测中的指标IOU指标目标检测深度学习中经典的检测方法有些检测时分为一个阶段,或者两个阶段的比如:两个阶段的算法(Two-Stage):Faster-RCNN、Mask-RCNN通过画多个预选框,从这些框中选出一个最准确的作为输出(多一步预选的步骤)一个阶段的算法(One-Stage):YOLO直接画出方框
2020-06-16 09:04:15 1677
原创 【PyTorch学习笔记】开始MNIST手写识别数字实战
分类问题图像表示每一张手写数字的图片在MNIST中图片大小是28×28的单通道图片我们可以把这个图片打平成一个长度为784长度为784长度为784的数组,也就是忽略它的二维之间的相关性。然后在前面插入一个维度就变成了一个[1,784][1,784][1,784]的一个矩阵。单个线性模型无法解决这个问题,所以目前使用三个线性模型进行嵌套X=[v1,v2,...,v784]X=[v_1,v_2,...,v_{784}]X=[v1,v2,...,v784]x:[1,784]x
2020-06-11 10:42:39 545
原创 深度学习之【pytorch入门】——从回归问题开始的深度学习
回归问题前言深度学习其实主要就是梯度下降,谁的梯度下降做的好,谁的网络就更精确,更好。梯度就是深度学习的核心精髓。梯度下降算法相当于就是去求解一个函数。回归问题我们再求解一个函数的极值的时候一般都是求他的导数,然后找出导数值为0时x的取值。梯度下降跟这个也很类似,就是要找出损失函数的极小值。而要找出他的极小值就要通过导数对x坐标进行修正。直到找出那个导数为0的。公式为:x′=x−dydxx'=x-\frac{dy}{dx}x′=x−dxdy (注意,这是一个不断迭代的过程,第一次计算结束后得
2020-06-04 22:06:43 663
原创 一招教你如何快速下载Kaggle上的数据集
下载Kaggle数据集官网网站地址:https://www.kaggle.com/基本原理主要就是利用Kaggle的API进行下载。kaggle competitions download -c <competition_name>
2020-05-23 15:30:00 11448 4
转载 及其简单的一种获得提取码的方法
在浏览器中输入:https://node.pnote.net/public/pan?url=https://pan.baidu.com/s/11mDEVKifOABiFXAOln2jFA其中“https://node.pnote.net/public/pan?url=”后的内容就是需要破解的网盘地址结果:{status: true,access_url: "https://pan.baidu.com/s/11mDEVKifOABiFXAOln2jFA",access_code: "8led"
2020-05-16 12:21:17 8270 2
原创 深度学习之神经网络传递流程
神经网络的传递过程https://zhuanlan.zhihu.com/p/65472471引用了一下知乎上一位大佬的图这是一个简单的神经网络,有两层网络组成正向传播就是我们的数据从神经网络的输入层通过神经网络传输到输出层的过程。下面将按照顺序进行解释核心思路:传递的过程其实就是矩阵的乘法以及计算加权平均后经过激活函数就完成了一次传递,以此类推进行传递1.数据输入网络输入层:输入层中输入的是一些矩阵,比如可以输入(1,2)(1,2)(1,2)这个点坐标作为一个数据,也可以输入一张2
2020-05-14 12:30:02 2480
原创 OpenCV或yolov4使用IPCamera进行目标检测——真正的随时检测
IP camera我们在手机的应用市场上搜索 IP camera就可以找到这个软件Tips: 这款APP是有广告的注意不要乱点广告,略影响用户体验。考虑开发一个更好的网络环境需要确定你的手机与电脑处在同一个局域网下,即他们连接同一个WIFI。启动点击运行IP摄像头APP , 点击下方的打开IP摄像头服务器 的选项。点击确定服务器开启之后,会提示你这个视频流服务器在局域网...
2020-05-06 10:39:39 4869 9
原创 答辩经验总结
答辩总结PPT设计核心内容要标出关键字PPT要简洁,不能一大段一大段文字的PPT只是大概方向的介绍,而真正的介绍还是自己的说明。不是通过PPT来进行介绍。PPT只是一个陪衬,关键还是自己说的用PPT来衬托自己说的,而不是自己衬托PPTPPT设计要简洁,不要花里胡哨,扁平化设计最佳PPT不要一堆文字挤在一起,而是多放图和表讲解PPT的过程中明确项目目的项目的必要性我们的...
2020-05-05 13:30:40 1017
原创 我的C学习笔记——各种细节
C学习笔记数据是为了获取信息,所以我们要处理数据因为我们要从数据中获得信息计算机只认识0和1区分110 和 1 106 1 2限定位宽就可以区分了0000 0000 0000 0000 0000 0000 0000 00010···110 60····01| 00···10 1 | 2整数占4位字节1个字节可以看作一个车厢1Byte=8bits1...
2020-05-05 11:42:59 436
原创 【yolov3】如何使用摄像头进行目标检测——yolov3-pytorch摄像头检测教程
【yolov3】如何使用摄像头进行目标检测——yolov3-pytorch摄像头检测教程原项目地址:https://github.com/eriklindernoren/PyTorch-YOLOv3主要思路:将原本的detect.py的基础上进行修改即可,思路就是把原来从数据集中一张一张图片地读取改成一帧一帧地读取图片,然后将图片传入神经网络,效果其实跟普通的检测差不多,只不过是持续不断...
2020-04-29 23:49:09 5356
原创 教你手把手搭建属于自己的OJ——青岛大学开源OJ搭建
OJ搭建项目地址:https://github.com/QingdaoU/OnlineJudgeDeploy参考文档:https://docs.onlinejudge.me/#/onlinejudge/guide/deployLinux版安装依赖打开终端,依次输入如下指令sudo yum updatesudo yum -y install epel-releasesudo yum ...
2020-04-23 17:52:41 9275 2
转载 解决‘E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不可用) ’ 问题
解决‘E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不可用) ’ 问题无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不可用) 首先查看下ls /var/lib/dpkg/lock-frontend然后删除sudo rm -r -f /var/lib/dpkg/lock-f...
2020-04-23 13:10:59 2661 1
转载 Latex所有常用数学符号整理
摘自:《一份不太简短的LATEX2介绍》或112分钟学会LATEX2 原版作者:Tobias Oetiker
2020-04-20 16:23:17 1345 2
原创 【C语言】C语言中的指针1
指针指针指的是地址一个指向变量的指针就是该变量的地址指向什么类型的变量,这个指针就是什么类型的通过指针,也就是地址能够帮助我们直接访问变量的值,同时指针能够让我们对内存进行操作,通过改变内存地址来实现一些算法和功能...
2020-04-18 13:07:03 423
原创 离散数学证明思路
离散证明思路证明要用完已知条件,也就是说我们可以从结论和已知条件出发去联想方法证明两个集合相等:两个集合元素完全相同两个集合相互包含设A,BA,BA,B为任意两个集合,则A=B⇔A⊆B并且B⊆A\color{red}{A}=B\color{black}{\lrArr}\color{blue}{A\subseteq B并且B\subseteq A}A=B⇔A⊆B并且B⊆A⋆⋆⋆上面的...
2020-04-06 22:51:18 4136
原创 离散数学定义大全
离散定义大全将会持续更新空集:∅={x∣x≠x}.\varnothing=\lbrace x|x\not ={x}\rbrace.∅={x∣x=x}.幂集:P(A)={x∣x⊆A}P(A)=\lbrace x|x\subseteq A\rbraceP(A)={x∣x⊆A}集合相等:A=B⇔A⊆B并且B⊆AA=B\lrArr A\subseteq B并且B\subseteq AA=...
2020-04-06 22:49:17 5229
原创 深度学习之【pytorch入门】——Pytorch基础
pytorch基础pytorch中的Tensor概念Tensor是指张量,是pytorch中的数据类型。其中,一个点叫0阶张量,一维数据(向量)是一阶张量,二维数组(矩阵)是二阶张量,三维数组就叫三阶张量,张量是矢量概念的一种推广。Tensor定义注意:Python中[[1,2],[2,3]],表示[1,2]、[2,3]表示行torch.FloatTensor这个可以生成一个浮点类...
2020-04-05 02:51:52 279
原创 【C语言】如何在C语言中使用回调函数
C语言回调函数回调函数的定义参考我以前这篇博客:https://blog.csdn.net/weixin_45709330/article/details/104351042把一段可执行的代码像参数传递那样传给其他代码,而这段代码会在某个时刻被调用执行,这就叫做回调。如果代码立即被执行就称为同步回调,如果在之后晚点的某个时间再执行,则称之为异步回调。函数 F1 调用函数 F2 的时候,函数...
2020-04-02 12:33:53 930
原创 深度学习之【pytorch入门】——二文带你理解深度学习的概念
深度学习神经网络基础文章目录深度学习神经网络基础什么是监督学习和无监督学习?监督学习中的两大问题回归问题分类问题模型的欠拟合和过拟合拟合欠拟合过拟合什么是向前传播?什么是向后传播向前传播⋆\star⋆向后传播什么是损失函数?常用损失函数什么是优化函数?什么是激活函数?常用的三种非线性激活函数什么是监督学习和无监督学习?监督学习:通过输入一组数据和其对应的标签数据让模型进行学习,找到输入和输出...
2020-03-18 23:28:23 247
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人