3045 Lcm与Gcd构造

本文探讨了一种基于最大公约数(GCD)和最小公倍数(LCM)来求解最小值的问题。通过数学推导,得出当gcd(a,b)=n且lcm(a,b)=m时,最小值可以通过找到m/n的因子k1和k2实现,其中k1和k2互质。然后通过循环遍历寻找这些因子,最终确定最小值。提供的代码示例展示了如何在O(sqrt(m))的时间复杂度内解决此问题。
摘要由CSDN通过智能技术生成

已知:
gcd(a,b) = n
lcm(a,b) = m

求min(a,b)是多少

通过gcd的了解我们可以知道,两个数a == k1 * n以及b == k2 * n并且gcd(k1,k2) == 1

ab == n * m
m == a * b/n
a
b == k1 * k2 * n * n
于是可以得到 m == k1 * k2 * n
将n除到左边,可以得出m/n == k1 * k2
于是k1 和 k2 都是 m / n的因子
这样就可以以根号的复杂度找出这两个因子,并判断k1 和 k2 是否是互质的
a + b == (k1 + k2 ) * n
所以说代码:

	int t = read;
    while(t--){
        ll n = read,m = read;
        ll lim = m / n;
        ll t1,t2;
        ll ans = 0x3f3f3f3f;
        for(ll i=1;i*i<=lim;i++){
            if(lim % i == 0){
                t1 = i,t2 = lim / i;
                if(gcd(t1,t2) == 1) ans = min(ans,(t1+t2)*n);
            }
        }
        printf("%lld\n",ans);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值