由算术基本定理可得:
任何一个大于1的N的自然数,如果N不为质数,可以被分解成有限个质数的乘机,即 n=(p1a1)*(p2a2)(p3a3)*……*(pnan),在这里(p1<p2<p3<……<pn)pi为质数,ai为正整数。
所以n的正因数的个数为(a1+1)(a2+2)……(an+1)。
这里为什么时各个质因数的指数加上1呢?
因为在组成n的因数的时候我们可以选择将该质因数取0,1,2……ai个,所以质因数pi对于n的因数的个数的贡献是(ai+1)。例如:12=(22)*(31),当3取0个时,2可以取0个,1个,2个即12的正因数为1,2,4(个数为3),同理当3取1个时,2可以取0,1,2个,即12的正因数为3,6,12(个数为3),所以就是(2+1)*(1+1)=6。
欧拉线性筛保证每个数只会取到一次,所以时间复杂度为O(n)
int pre[maxn],vis[maxn],prime[maxn],fac[maxn]; //pre为最小因数出现的个数,vis为该数是否已经出现过,prime保存的时质数
int cnt=0;
fac[1]=1;
for(int i=2;i<maxn;i++){
if(!vis[i]) prime[cnt++]=i,pre[i]=1,fac[i]=2; //当i为质数时,i出现的次数为1,质数的正因素的个数为2,1和他自己
for(int j=0;j<cnt&&i*prime[j]<maxn;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
pre[i*prime[j]] = pre[i]+1; //i*prime[j]中prime[j]出现的次数为i中prime[j]出现的个数加1
fac[i*prime[j]]=fac[i]/(pre[i]+1)*(pre[i*prime[j]]+1); //i*prime[j]中的正因数出现的个数需要去掉prime[j]对于i的贡献,再乘上i*prime[j]中的最小质数的个数+1。
}
pre[i*prime[j]]=1; //prime[j]出现的次数为1
fac[i*prime[j]]=(pre[i*prime[j]]+1)*fac[i];
}
}