简单dp笔记

1.背包问题

有n件物品和一个容量是v的背包,物品使用一次。

核心代码

for (int i = 1; i <= n; i++)
{	
    for (int j = 0; j <= m; j++)	
        {		
            f[i][j] = f[i - 1][j];	
            //表示第i件物品不选
            if (v[i] <= j)		
            {			
            f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);	
            //当物品容积小于当前容积,选这件物品。	
            }	
        }
 }

完全背包问题
物体可使用无限次

for (int i = 1; i <= n; i++)
{	
    for (int j = 0; j <= m; j++)	
     {		
             f[i][j] = f[i - 1][j];		
             if (v[i] <= j)		
         {			
         f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);			
         //f[i][j]=max(f[i-1][j],f[i-1][j-v]+w,f[i-1][j-2v]+2w...];			
         //f[i][j-v]=max(f[i-1][j-v],f[i-1][j-2v]+w,f[i-1][j-3v]+2w...];			
         //所以f[i][j]=max(f[i][j],f[i][j-v]+w];		         
         }
     }
}

f[n][v]表示的意义为n件物品体积为v时的最大价值。

区间石子合并问题
N 堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

    for(int len=2;len<=n;len++){    //len为每次枚举的区间长度
        for(int l=1;l+len-1<=n;l++){
            int r=l+len-1;
            for(int k=l;k<r;k++){
                f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
                //s[]为前缀和
            }    
        }
    }

多重部分和

for (int i = 0; i < n; i++)
{
	for (int j = 0; j <= k; j++)
	{
		if (dp[j] >= 0)
		{
			dp[j] = m[i];
		}
		else if (j < a[i] || dp[j - a[i] <= 0)
		{
			dp[j] = -1;
		}
		else
		{
			dp[j] = dp[j - a[i]] - 1;
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值