1.背包问题
有n件物品和一个容量是v的背包,物品使用一次。
核心代码
for (int i = 1; i <= n; i++)
{
for (int j = 0; j <= m; j++)
{
f[i][j] = f[i - 1][j];
//表示第i件物品不选
if (v[i] <= j)
{
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
//当物品容积小于当前容积,选这件物品。
}
}
}
完全背包问题
物体可使用无限次
for (int i = 1; i <= n; i++)
{
for (int j = 0; j <= m; j++)
{
f[i][j] = f[i - 1][j];
if (v[i] <= j)
{
f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
//f[i][j]=max(f[i-1][j],f[i-1][j-v]+w,f[i-1][j-2v]+2w...];
//f[i][j-v]=max(f[i-1][j-v],f[i-1][j-2v]+w,f[i-1][j-3v]+2w...];
//所以f[i][j]=max(f[i][j],f[i][j-v]+w];
}
}
}
f[n][v]表示的意义为n件物品体积为v时的最大价值。
区间石子合并问题
N 堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
for(int len=2;len<=n;len++){ //len为每次枚举的区间长度
for(int l=1;l+len-1<=n;l++){
int r=l+len-1;
for(int k=l;k<r;k++){
f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
//s[]为前缀和
}
}
}
多重部分和
for (int i = 0; i < n; i++)
{
for (int j = 0; j <= k; j++)
{
if (dp[j] >= 0)
{
dp[j] = m[i];
}
else if (j < a[i] || dp[j - a[i] <= 0)
{
dp[j] = -1;
}
else
{
dp[j] = dp[j - a[i]] - 1;
}
}
}