为什么你必须学会CUDA编程?
想象一下,你手头有个计算任务,普通CPU跑得慢得像乌龟爬,而GPU却能像火箭一样把性能拉满——这就是高性能计算(HPC)的魅力!在这个数据爆炸的时代,无论是AI训练、科学仿真还是金融建模,HPC都成了不可或缺的利器。而NVIDIA的CUDA平台,正是这场革命的核心,把GPU从画图的“小能手”变成了并行计算的“大杀器”。作为一名C++专家,我可以负责任地说:学会CUDA,不仅能让你在技术圈里站稳脚跟,还能让你真正感受到“计算即力量”的快感!
本文的目标很简单:用大白话带你搞懂CUDA的核心概念,从历史演进到编程模型,再到上手敲代码。通过两个精心设计的实战案例,我要让你在读完这篇文章后,能立刻写出自己的CUDA程序。准备好了吗?咱们这就开干!
一、高性能计算的历史演进:从龟速到光速
摩尔定律:晶体管翻倍的好日子到头了
1965年,戈登·摩尔扔出一句神预测:芯片上的晶体管数量每18到24个月翻倍。这招管用了好几十年,CPU性能蹭蹭上涨。但到2000年左右,麻烦来了——Dennard缩放失效。啥意思?就是晶体管缩