统计学习方法
qtayu
这个作者很懒,什么都没留下…
展开
-
统计学习方法-第八章提升方法
AdaBoost算法: 步骤(1):假设训练数据集具有均匀的权值分布,即每个训练样本在基本分类器的学习中作用相同,这一假设保证第1步能够在原始数据上学习基本分类器G1(x) 步骤(2):AdaBoost反复学习基本分类器,在每一轮m=1,2…,M顺次地执行下列操作 (a):使用当前分布Dm加权的训练数据集,学习基本分类器Gm(x) (b):计算基本分类器Gm(x)在加权训练数据集上的分类误差率 ©:计算基本分类器Gm(x)的系数am (d):更新训练数据的权值分布为下一轮作准备 步骤(3):线性组合f(x)原创 2020-11-02 15:53:11 · 220 阅读 · 0 评论 -
统计学习方法 第五章决策树
决策树: 定义: 描述对实例进行分类的树型结构,决策树由结点和有向边组成,结点有两种类型:内部结点(表示一个特征或属性)和叶结点(一个类) 算法: 用决策树分类,从根节点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到其子节点,这时,每一个子节点对于着该特征的一个取值,如此递归地对实例进行测试并分配,直至达到叶节点,最后将实例分到叶节点的类中。 条件概率分布: 假设X为表示特征的随机变量,Y为表示类的随机变量,那么这个条件概率分布可以表示为P(X|Y)。X取值于给定划分下单元的集合,Y取值于类的集原创 2020-10-07 18:20:46 · 361 阅读 · 0 评论